Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #47 Sep 24 2023 10:07:35
%S 1,1,2,5,15,51,189,753,3248,14738,70658,354178,1857703,10121033,
%T 57224955,334321008,2017234773,12530668585,80083779383,525284893144,
%U 3533663143981,24336720018666,171484380988738,1234596183001927,9075879776056533,68052896425955296
%N Number of normal generalized Young tableaux of size n with all rows and columns strictly increasing.
%C A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers.
%H Alois P. Heinz, <a href="/A299968/b299968.txt">Table of n, a(n) for n = 0..50</a> (first 46 terms from Ludovic Schwob)
%H D. E. Knuth, <a href="https://projecteuclid.org/euclid.pjm/1102971948">Permutations, matrices, and generalized Young tableaux</a>, Pacific Journal of Mathematics, Vol. 34, No. 3 (1970), 709-727.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Young_tableau">Young tableau</a>
%F a(n) = Sum_{k=0..n} 2^k * A238121(n,k). - _Ludovic Schwob_, Sep 23 2023
%e The a(4) = 15 tableaux:
%e 1 2 3 4
%e .
%e 1 2 3 1 2 4 1 3 4 1 2 3 1 2 3
%e 4 3 2 2 3
%e .
%e 1 2 1 3 1 2
%e 3 4 2 4 2 3
%e .
%e 1 2 1 3 1 2 1 4 1 3
%e 3 2 2 2 2
%e 4 4 3 3 3
%e .
%e 1
%e 2
%e 3
%e 4
%t unddis[y_]:=DeleteCases[y-#,0]&/@Tuples[Table[If[y[[i]]>Append[y,0][[i+1]],{0,1},{0}],{i,Length[y]}]];
%t dos[y_]:=With[{sam=Rest[unddis[y]]},If[Length[sam]===0,If[Total[y]===0,{{}},{}],Join@@Table[Prepend[#,y]&/@dos[sam[[k]]],{k,1,Length[sam]}]]];
%t Table[Sum[Length[dos[y]],{y,IntegerPartitions[n]}],{n,1,8}]
%Y Cf. A000085, A000898, A001221, A005117, A006958, A015128, A138178, A238121, A238690, A285175, A296561, A297388, A299926, A300120, A300122.
%K nonn
%O 0,3
%A _Gus Wiseman_, Feb 26 2018
%E More terms from _Ludovic Schwob_, Sep 23 2023