login
A380126
Total number of ways of partitioning n and any natural number less than or equal to n into the same number of parts, not treating partitions of n and itself in a different order as distinct.
2
1, 3, 6, 14, 26, 58, 106, 214, 394, 742, 1314, 2406, 4139, 7234, 12250, 20778, 34279, 56805, 91866, 148816, 236772, 375899, 588208, 919235, 1417538, 2180608, 3320197, 5038918, 7577850, 11363516, 16899942, 25056925, 36892553, 54136934, 78951553, 114783293, 165922204
OFFSET
1,2
FORMULA
a(n) = Sum_{i=1..n-1} Sum_{j=1..i} p(n,j)*p(i,j) + Sum_{j=1..n} (p(n,j)*(p(n,j)+1))/2, where p(n,j) is the number of partitions of n into j positive parts (A008284, A072233).
EXAMPLE
For example, a(4)=14:
4 and 1: (4,1),
4 and 2: (4,2) (3+1,1+1) (2+2,1+1),
4 and 3: (4,3) (3+1,2+1) (2+2,2+1) (2+1+1,1+1+1),
4 and 4: (4,4) (3+1,3+1) (3+1,2+2) (2+2,2+2) (2+1+1,2+1+1) (1+1+1+1,1+1+1+1).
Note that (3+1,2+2) and (2+2,3+1) are not both counted.
CROSSREFS
Similar to A380124, A380125.
Sequence in context: A358831 A323450 A051749 * A278788 A279828 A277954
KEYWORD
nonn,changed
AUTHOR
Aidan Markey, Jan 12 2025
EXTENSIONS
More terms from Chai Wah Wu, Feb 19 2025
STATUS
approved