login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A380128
Triangle read by rows: Riordan array (1/(C(x)*sqrt(1-4*x)), x/C(x)) where C(x) is g.f. of A000108.
0
1, 1, 1, 3, 0, 1, 10, 1, -1, 1, 35, 4, 0, -2, 1, 126, 15, 1, 0, -3, 1, 462, 56, 5, 0, 1, -4, 1, 1716, 210, 21, 1, 0, 3, -5, 1, 6435, 792, 84, 6, 0, 0, 6, -6, 1, 24310, 3003, 330, 28, 1, 0, -1, 10, -7, 1, 92378, 11440, 1287, 120, 7, 0, 0, -4, 15, -8, 1, 352716, 43758, 5005, 495, 36, 1, 0, 0, -10, 21, -9, 1
OFFSET
0,4
FORMULA
G.f.: 1/((C(t) - x*t) * sqrt(1 - 4*t)) where C(t) is g.f. of A000108.
Inverse Riordan array is (2 - D(x), x * D(x)) where D(x) is g.f. of A001764.
Conjecture: T(n, k) = Sum_{i=0..n-k} (-1)^i * binomial(2*n - 2*k, n - k - i) * binomial(k + i, i).
EXAMPLE
Triangle T(n, k) for 0 <= k <= n starts:
n \k : 0 1 2 3 4 5 6 7 8 9 10 11
=================================================================
0 : 1
1 : 1 1
2 : 3 0 1
3 : 10 1 -1 1
4 : 35 4 0 -2 1
5 : 126 15 1 0 -3 1
6 : 462 56 5 0 1 -4 1
7 : 1716 210 21 1 0 3 -5 1
8 : 6435 792 84 6 0 0 6 -6 1
9 : 24310 3003 330 28 1 0 -1 10 -7 1
10 : 92378 11440 1287 120 7 0 0 -4 15 -8 1
11 : 352716 43758 5005 495 36 1 0 0 -10 21 -9 1
etc.
PROG
(PARI) T(n, k) = polcoef(polcoef(1/((C(t)-x*t)*sqrt(1-4*t))+x*O(x^k), k, x)+t*O(t^n), n, t);
m = matrix(15, 15, n, k, if(k>n, 0, T(n-1, k-1)))
CROSSREFS
Cf. A088218 (column 0), A001791 (column 1), A000007 (central terms).
Sequence in context: A353010 A112906 A137375 * A376788 A348576 A307657
KEYWORD
sign,easy,tabl,new
AUTHOR
Werner Schulte, Jan 12 2025
STATUS
approved