The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A120941 a(n)=k-n where prime(k) is the smallest prime greater than prime(n)*prime(n+1). 2
3, 5, 9, 18, 30, 42, 60, 77, 113, 145, 179, 229, 262, 293, 353, 430, 487, 545, 622, 671, 737, 826, 916, 1052, 1184, 1249, 1310, 1373, 1443, 1654, 1894, 2026, 2131, 2298, 2481, 2602, 2782, 2943, 3107, 3298, 3436, 3651, 3866, 3975, 4083, 4346, 4808, 5144 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Parity of A120941: 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, ....
LINKS
FORMULA
a(n) = A000720(A006094(n)) + 1 - n. - Robert Israel, Mar 21 2017
EXAMPLE
The product of the 4th prime number, 7 and the 5th prime, 11, is 77; the smallest prime greater than this is the 22nd prime, 79; therefore the 4th term of the sequence is 22-4 = 18.
MAPLE
f:= n -> numtheory:-pi(ithprime(n)*ithprime(n+1))+1-n:
map(f, [$1..100]); # Robert Israel, Mar 21 2017
MATHEMATICA
Table[PrimePi[Prime[n]Prime[n + 1]] - n + 1, {n, 48}] (* Zak Seidov, Aug 21 2006 *)
PROG
(PARI) for(n=1, 100, print1(primepi(prime(n)*prime(n + 1)) - n + 1, ", ")) \\ Indranil Ghosh, Mar 22 2017
(Python)
from sympy import prime, primepi
print([primepi(prime(n)*prime(n + 1)) - n + 1 for n in range(1, 100)]) # Indranil Ghosh, Mar 22 2017
CROSSREFS
Sequence in context: A062221 A074861 A281852 * A108227 A289912 A289914
KEYWORD
nonn
AUTHOR
Axel Harvey, Aug 18 2006
EXTENSIONS
More terms from Robert G. Wilson v, Aug 21 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 04:19 EDT 2024. Contains 372720 sequences. (Running on oeis4.)