The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A281852 Expansion of Sum_{p prime, i>=1} x^(p^i) / (1 - Sum_{p prime, j>=1} x^(p^j))^2. 0
 0, 1, 1, 3, 5, 9, 18, 29, 55, 91, 163, 274, 472, 798, 1349, 2275, 3804, 6380, 10614, 17685, 29318, 48584, 80296, 132506, 218329, 359139, 590092, 968120, 1586707, 2597349, 4247619, 6939353, 11326636, 18471726, 30099313, 49008929, 79739345, 129650164, 210661777, 342080831, 555153086, 900432434, 1459670289 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Total number of parts in all compositions (ordered partitions) of n into prime powers (1 excluded). LINKS Table of n, a(n) for n=1..43. Index entries for sequences related to compositions FORMULA G.f.: Sum_{p prime, i>=1} x^(p^i) / (1 - Sum_{p prime, j>=1} x^(p^j))^2. EXAMPLE a(7) = 18 because we have [7], [5, 2], [4, 3], [3, 4], [3, 2, 2], [2, 5], [2, 3, 2], [2, 2, 3] and 1 + 2 + 2 + 2 + 3 + 2 + 3 + 3 = 18. MATHEMATICA nmax = 43; Rest[CoefficientList[Series[Sum[Floor[1/PrimeNu[i]] x^i, {i, 2, nmax}]/(1 - Sum[Floor[1/PrimeNu[j]] x^j, {j, 2, nmax}])^2, {x, 0, nmax}], x]] CROSSREFS Cf. A121304, A246655, A280195. Sequence in context: A268212 A062221 A074861 * A120941 A108227 A289912 Adjacent sequences: A281849 A281850 A281851 * A281853 A281854 A281855 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Jan 31 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 04:19 EDT 2024. Contains 372720 sequences. (Running on oeis4.)