The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A281852 Expansion of Sum_{p prime, i>=1} x^(p^i) / (1 - Sum_{p prime, j>=1} x^(p^j))^2. 0
0, 1, 1, 3, 5, 9, 18, 29, 55, 91, 163, 274, 472, 798, 1349, 2275, 3804, 6380, 10614, 17685, 29318, 48584, 80296, 132506, 218329, 359139, 590092, 968120, 1586707, 2597349, 4247619, 6939353, 11326636, 18471726, 30099313, 49008929, 79739345, 129650164, 210661777, 342080831, 555153086, 900432434, 1459670289 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
Total number of parts in all compositions (ordered partitions) of n into prime powers (1 excluded).
LINKS
FORMULA
G.f.: Sum_{p prime, i>=1} x^(p^i) / (1 - Sum_{p prime, j>=1} x^(p^j))^2.
EXAMPLE
a(7) = 18 because we have [7], [5, 2], [4, 3], [3, 4], [3, 2, 2], [2, 5], [2, 3, 2], [2, 2, 3] and 1 + 2 + 2 + 2 + 3 + 2 + 3 + 3 = 18.
MATHEMATICA
nmax = 43; Rest[CoefficientList[Series[Sum[Floor[1/PrimeNu[i]] x^i, {i, 2, nmax}]/(1 - Sum[Floor[1/PrimeNu[j]] x^j, {j, 2, nmax}])^2, {x, 0, nmax}], x]]
CROSSREFS
Sequence in context: A268212 A062221 A074861 * A120941 A108227 A289912
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 31 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 04:19 EDT 2024. Contains 372720 sequences. (Running on oeis4.)