login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Alternating sum of the Fibonacci numbers multiplied by their (combinatorial) indices.
2

%I #15 Apr 03 2019 10:47:58

%S 0,1,3,6,14,26,52,95,177,318,572,1012,1784,3117,5423,9382,16170,27758,

%T 47500,81035,137885,234046,396408,670056,1130544,1904281,3202587,

%U 5378310,9020102,15109058,25279012,42248567,70537929,117657342,196076468,326485852

%N Alternating sum of the Fibonacci numbers multiplied by their (combinatorial) indices.

%H Colin Barker, <a href="/A120940/b120940.txt">Table of n, a(n) for n = 0..1000</a>

%H M. M. Herreshoff, <a href="http://marcello.gotdns.com/~m/uncount.1.2.pdf">A Combinatorial proof of the summation from k = 0 to n of k times f sub k</a>, Presented at The Twelfth International Conference on Fibonacci Numbers and Their Applications.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-1,-3,-1).

%F a(n) = Sum_{k=0..n} (-1)^(n-k)*k*f(k) also, when n >= 3, a(n) = nf(n-1) + f(n-3) + (-1)^n where f(n) = F(n+1).

%F a(n) = (-1)^n+A000045(n)-A001629(n+2)-3*A001629(n+1). - _R. J. Mathar_, Jul 11 2011

%F From _Colin Barker_, Apr 03 2019: (Start)

%F G.f.: x*(1 + 2*x) / ((1 + x)*(1 - x - x^2)^2).

%F a(n) = a(n-1) + 3*a(n-2) - a(n-3) - 3*a(n-4) - a(n-5) for n>4.

%F (End)

%t CoefficientList[Series[(2*z^2 + z)/((z + 1)*(z^2 + z - 1)^2), {z, 0, 100}], z] (* _Vladimir Joseph Stephan Orlovsky_, Jul 08 2011 *)

%t LinearRecurrence[{1,3,-1,-3,-1},{0,1,3,6,14},40] (* _Harvey P. Dale_, Apr 21 2018 *)

%o #!/usr/bin/guile -s Computes the alternating sum of the fibonacci numbers multiplied by their (combinatorial) indices. !# (use-modules (srfi srfi-1)) (define (fibo n) (define (iter a b k) (if (= k n) b (iter b (+ a b) (+ k 1)))) (iter 0 1 0)) (define (a n) (fold + 0 (map (lambda (k) (* k (fibo k) (expt -1 (- n k)))) (iota (+ n 1)))))

%o (PARI) concat(0, Vec(x*(1 + 2*x) / ((1 + x)*(1 - x - x^2)^2) + O(x^40))) \\ _Colin Barker_, Apr 03 2019

%Y Cf. A094584, A000045.

%K nonn,easy

%O 0,3

%A Marcello M. Herreshoff (m(AT)marcello.gotdns.com), Jul 18 2006