login
A321142
Number of strict integer partitions of 2*n with no subset summing to n.
30
0, 1, 2, 3, 5, 7, 11, 15, 23, 30, 43, 57, 79, 102, 138, 174, 232, 292, 375, 471, 602, 741, 935, 1148, 1425, 1733, 2137, 2571, 3156, 3789, 4557, 5470, 6582, 7796, 9317, 11027, 13058, 15400, 18159, 21249, 24971, 29170, 33986, 39596, 46073, 53219, 61711, 71330, 82171
OFFSET
0,3
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..200
EXAMPLE
The a(1) = 1 through a(8) = 23 partitions:
(2) (4) (6) (8) (10) (12) (14) (16)
(3,1) (4,2) (5,3) (6,4) (7,5) (8,6) (9,7)
(5,1) (6,2) (7,3) (8,4) (9,5) (10,6)
(7,1) (8,2) (9,3) (10,4) (11,5)
(5,2,1) (9,1) (10,2) (11,3) (12,4)
(6,3,1) (11,1) (12,2) (13,3)
(7,2,1) (5,4,3) (13,1) (14,2)
(7,3,2) (6,5,3) (15,1)
(7,4,1) (8,4,2) (7,5,4)
(8,3,1) (8,5,1) (7,6,3)
(9,2,1) (9,3,2) (9,4,3)
(9,4,1) (9,5,2)
(10,3,1) (9,6,1)
(11,2,1) (10,4,2)
(8,3,2,1) (10,5,1)
(11,3,2)
(11,4,1)
(12,3,1)
(13,2,1)
(6,5,4,1)
(7,4,3,2)
(9,4,2,1)
(10,3,2,1)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], And[UnsameQ@@#, !Or@@Table[SameQ[Total[#[[s]]], n/2], {s, Subsets[Range[Length[#]]]}]]&]], {n, 2, 20, 2}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 28 2018
EXTENSIONS
a(33)-a(48) from Giovanni Resta, Oct 30 2018
STATUS
approved