login
A321143
Number of non-isomorphic knapsack multiset partitions of weight n.
2
1, 1, 4, 10, 31, 87, 272, 835, 2673, 8805, 29583
OFFSET
0,3
COMMENTS
A multiset partition is knapsack if every distinct submultiset of the parts has a different multiset union.
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(4) = 31 knapsack multiset partitions:
{{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}}
{{1,2}} {{1,2,2}} {{1,1,2,2}}
{{1},{1}} {{1,2,3}} {{1,2,2,2}}
{{1},{2}} {{1},{1,1}} {{1,2,3,3}}
{{1},{2,2}} {{1,2,3,4}}
{{1},{2,3}} {{1},{1,1,1}}
{{2},{1,2}} {{1,1},{1,1}}
{{1},{1},{1}} {{1},{1,2,2}}
{{1},{2},{2}} {{1,1},{2,2}}
{{1},{2},{3}} {{1,2},{1,2}}
{{1},{2,2,2}}
{{1,2},{2,2}}
{{1},{2,3,3}}
{{1,2},{3,3}}
{{1},{2,3,4}}
{{1,2},{3,4}}
{{1,3},{2,3}}
{{2},{1,2,2}}
{{3},{1,2,3}}
{{1},{1},{2,2}}
{{1},{1},{2,3}}
{{1},{2},{2,2}}
{{1},{2},{3,3}}
{{1},{2},{3,4}}
{{1},{3},{2,3}}
{{2},{2},{1,2}}
{{1},{1},{1},{1}}
{{1},{1},{2},{2}}
{{1},{2},{2},{2}}
{{1},{2},{3},{3}}
{{1},{2},{3},{4}}
Missing from this list are {{1},{1},{1,1}} and {{1},{2},{1,2}}, which are not knapsack.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Oct 28 2018
STATUS
approved