login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321146
Exponential weird numbers: numbers that are exponential abundant (A129575) but not exponential pseudoperfect (A318100).
7
4900, 14700, 53900, 63700, 83300, 93100, 112700, 142100, 151900, 161700, 181300, 191100, 200900, 210700, 230300, 249900, 259700, 279300, 289100, 298900, 328300, 338100, 347900, 357700, 387100, 406700, 426300, 436100, 455700, 475300, 494900, 504700, 524300
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Robert Israel)
Eric Weisstein's World of Mathematics, e-Divisor.
Eric Weisstein's World of Mathematics, e-Perfect Number.
EXAMPLE
4900 is in the sequence since its proper exponential divisors, {70, 140, 350, 490, 700, 980, 2450} sum to 5180 > 4900, yet no subset of its divisors sums to 4900.
MAPLE
filter:= proc(n)
local L, m, P, i, j, T, S, t, v;
L:= ifactors(n)[2];
m:= nops(L);
P:= map(t -> numtheory:-divisors(t[2]), L);
if mul(add(L[i][1]^j, j=P[i]), i=1..m) <= 2*n then return false fi;
T:= combinat:-cartprod(P);
S:= {0}:
while not T[finished] do
t:= T:-nextvalue();
v:= mul(L[i][1]^t[i], i=1..m);
if v = n then next fi;
if member(n-v, S) then return false fi;
S:= S union select(`<=`, map(`+`, S, v), n);
od;
true
end proc:
select(filter, [$1..10^6]); # Robert Israel, Feb 19 2019
MATHEMATICA
dQ[n_, m_] := (n>0&&m>0 &&Divisible[n, m]); expDivQ[n_, d_] := Module[ {ft=FactorInteger[n]}, And@@MapThread[dQ, {ft[[;; , 2]], IntegerExponent[ d, ft[[;; , 1]]]} ]]; eDivs[n_] := Module[ {d=Rest[Divisors[n]]}, Select[ d, expDivQ[n, #]&] ]; esigma[1]=1; esigma[n_] := Total@eDivs[n]; eAbundantQ[n_] := esigma[n] > 2 n; a = {}; n = 0; While[Length[a] < 30, n++; If[!eAbundantQ[n], Continue[]]; d = Most[eDivs[n]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c < 1, AppendTo[a, n]]]; a
CROSSREFS
The exponential version of A006037.
Sequence in context: A186478 A220059 A339939 * A374500 A107545 A256363
KEYWORD
nonn
AUTHOR
Amiram Eldar, Oct 28 2018
STATUS
approved