The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A129575 Exponential abundant numbers: integers k for which A126164(k) > k, or equivalently for which A051377(k) > 2k. 20
 900, 1764, 3600, 4356, 4500, 4900, 6084, 6300, 7056, 8100, 8820, 9900, 10404, 11700, 12348, 12996, 14700, 15300, 17100, 19044, 19404, 20700, 21780, 22500, 22932, 25200, 26100, 27900, 29988, 30276, 30420, 30492, 31500, 33300, 33516, 34596, 35280, 36900, 38700, 39600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS There are only 52189 exponential abundant numbers less than 50 million, which suggests that these account for approximately 0.1% of all integers. Includes 36*m for all m coprime to 6 that are not squarefree. - Robert Israel, Feb 19 2019 The asymptotic density of this sequence is Sum_{n>=1} f(A328136(n)) = 0.001043673..., where f(n) = (6/(Pi^2*n))*Product_{prime p|n}(p/(p+1)). - Amiram Eldar, Sep 02 2022 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 Peter Hagis, Jr., Some Results Concerning Exponential Divisors, Internat. J. Math. & Math. Sci., Vol. 11, No. 2, (1988), pp. 343-350. Eric Weisstein's World of Mathematics, e-Divisor. EXAMPLE The third integer that is exceeded by its proper exponential divisor sum is 3600. Hence a(3) = 3600. MAPLE filter:= proc(n) local L, m, i, j; L:= ifactors(n)[2]; m:= nops(L); mul(add(L[i][1]^j, j=numtheory:-divisors(L[i][2])), i=1..m)>2*n end proc: select(filter, [\$1..10^5]); # Robert Israel, Feb 19 2019 MATHEMATICA ExponentialDivisors[1]={1}; ExponentialDivisors[n_]:=Module[{}, {pr, pows}=Transpose@FactorInteger[n]; divpowers=Distribute[Divisors[pows], List]; Sort[Times@@(pr^Transpose[divpowers])]]; properexponentialdivisorsum[k_]:=Plus@@ExponentialDivisors[k]-k; Select[Range[5 10^4], properexponentialdivisorsum[ # ]># &] CROSSREFS Cf. A126164, A051377, A049419, A054979, A054980, A328136. Sequence in context: A318720 A338540 A137490 * A328136 A336254 A321206 Adjacent sequences: A129572 A129573 A129574 * A129576 A129577 A129578 KEYWORD easy,nonn AUTHOR Ant King, Apr 28 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 23:05 EST 2022. Contains 358710 sequences. (Running on oeis4.)