login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321140
a(n) = Sum_{d|n} sigma_3(d).
4
1, 10, 29, 83, 127, 290, 345, 668, 786, 1270, 1333, 2407, 2199, 3450, 3683, 5349, 4915, 7860, 6861, 10541, 10005, 13330, 12169, 19372, 15878, 21990, 21226, 28635, 24391, 36830, 29793, 42798, 38657, 49150, 43815, 65238, 50655, 68610, 63771, 84836, 68923, 100050, 79509, 110639, 99822
OFFSET
1,2
COMMENTS
Inverse Möbius transform applied twice to cubes.
LINKS
N. J. A. Sloane, Transforms
FORMULA
G.f.: Sum_{k>=1} sigma_3(k)*x^k/(1 - x^k).
a(n) = Sum_{d|n} d^3*tau(n/d).
From Jianing Song, Oct 28 2018: (Start)
Multiplicative with a(p^e) = (p^3*(p^(3e+3) - e - 2) + e + 1)/(p^3 - 1)^2.
Dirichlet g.f.: zeta(s)^2*zeta(s-3). (End)
Sum_{k=1..n} a(k) ~ Pi^8 * n^4 / 32400. - Vaclav Kotesovec, Nov 08 2018
MAPLE
with(numtheory): seq(coeff(series(add(sigma[3](k)*x^k/(1-x^k), k=1..n), x, n+1), x, n), n = 1 .. 45); # Muniru A Asiru, Oct 28 2018
MATHEMATICA
Table[Sum[DivisorSigma[3, d], {d, Divisors[n]}] , {n, 45}]
nmax = 45; Rest[CoefficientList[Series[Sum[DivisorSigma[3, k] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
f[p_, e_] := (p^3*(p^(3e+3) - e - 2) + e + 1)/(p^3 - 1)^2; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
PROG
(PARI) a(n) = sumdiv(n, d, sigma(d, 3)); \\ Michel Marcus, Oct 28 2018
CROSSREFS
KEYWORD
nonn,mult,easy
AUTHOR
Ilya Gutkovskiy, Oct 28 2018
STATUS
approved