login
A055850
a(n) = 3*a(n-1) - a(n-2) with a(0)=1, a(1)=10.
3
1, 10, 29, 77, 202, 529, 1385, 3626, 9493, 24853, 65066, 170345, 445969, 1167562, 3056717, 8002589, 20951050, 54850561, 143600633, 375951338, 984253381, 2576808805, 6746173034, 17661710297, 46238957857, 121055163274
OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
FORMULA
a(n) = (10*(((3+sqrt(5))/2)^n - ((3-sqrt(5))/2)^n) - (((3+sqrt(5))/2)^(n-1) - ((3-sqrt(5))/2)^(n-1)))/sqrt(5).
G.f.: (1+7*x)/(1-3*x+x^2).
a(n) = Lucas(2n+1) + 6*Fibonacci(2n).
a(n) = Fibonacci(2*n+2) + 7*Fibonacci(2*n). - G. C. Greubel, Jan 16 2020
MAPLE
with(combinat); seq( fibonacci(2*n+2) + 7*fibonacci(2*n), n=0..30); # G. C. Greubel, Jan 16 2020
MATHEMATICA
LinearRecurrence[{3, -1}, {1, 10}, 30] (* Harvey P. Dale, Jul 22 2019 *)
PROG
(Magma) [Lucas(2*n+1) + 6*Fibonacci(2*n): n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+7*x)/(1-3*x+x^2) )); // Marius A. Burtea, Jan 16 2020
(PARI) vector(31, n, fibonacci(2*n) + 7*fibonacci(2*(n-1)) ) \\ G. C. Greubel, Jan 16 2020
(Sage) [fibonacci(2*n+2) + 7*fibonacci(2*n) for n in (0..30)] # G. C. Greubel, Jan 16 2020
(GAP) List([0..30], n-> Fibonacci(2*n+2) + 7*Fibonacci(2*n) ); # G. C. Greubel, Jan 16 2020
CROSSREFS
Sequence in context: A367343 A031129 A048772 * A200185 A372710 A321140
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jun 03 2000
STATUS
approved