OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (3,-1).
FORMULA
a(n) = (10*(((3+sqrt(5))/2)^n - ((3-sqrt(5))/2)^n) - (((3+sqrt(5))/2)^(n-1) - ((3-sqrt(5))/2)^(n-1)))/sqrt(5).
G.f.: (1+7*x)/(1-3*x+x^2).
a(n) = Lucas(2n+1) + 6*Fibonacci(2n).
a(n) = Fibonacci(2*n+2) + 7*Fibonacci(2*n). - G. C. Greubel, Jan 16 2020
MAPLE
with(combinat); seq( fibonacci(2*n+2) + 7*fibonacci(2*n), n=0..30); # G. C. Greubel, Jan 16 2020
MATHEMATICA
LinearRecurrence[{3, -1}, {1, 10}, 30] (* Harvey P. Dale, Jul 22 2019 *)
PROG
(Magma) [Lucas(2*n+1) + 6*Fibonacci(2*n): n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+7*x)/(1-3*x+x^2) )); // Marius A. Burtea, Jan 16 2020
(PARI) vector(31, n, fibonacci(2*n) + 7*fibonacci(2*(n-1)) ) \\ G. C. Greubel, Jan 16 2020
(Sage) [fibonacci(2*n+2) + 7*fibonacci(2*n) for n in (0..30)] # G. C. Greubel, Jan 16 2020
(GAP) List([0..30], n-> Fibonacci(2*n+2) + 7*Fibonacci(2*n) ); # G. C. Greubel, Jan 16 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jun 03 2000
STATUS
approved