login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055849
a(n) = 3*a(n-1) - a(n-2) with a(0)=1, a(1)=9.
4
1, 9, 26, 69, 181, 474, 1241, 3249, 8506, 22269, 58301, 152634, 399601, 1046169, 2738906, 7170549, 18772741, 49147674, 128670281, 336863169, 881919226, 2308894509, 6044764301, 15825398394, 41431430881, 108468894249
OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
FORMULA
a(n) = (9*(((3+sqrt(5))/2)^n - ((3-sqrt(5))/2)^n) - (((3+sqrt(5))/2)^(n-1) - ((3-sqrt(5))/2)^(n-1)))/sqrt(5).
G.f.: (1+6*x)/(1-3*x+x^2).
a(n) = L(2*n-1) + 2*L(2*n+1), where L(n) is the n-th Lucas number. - Rigoberto Florez, Dec 24 2018
a(n) = Fibonacci(2*n+2) + 6*Fibonacci(2*n). - G. C. Greubel, Jan 16 2020
MAPLE
with(combinat); seq( fibonacci(2*n+2) + 6*fibonacci(2*n), n=0..30); # G. C. Greubel, Jan 16 2020
MATHEMATICA
LinearRecurrence[{3, -1}, {1, 9}, 30] (* Harvey P. Dale, Jan 20 2013 *)
Table[LucasL[2n-1]+2LucasL[2n+1], {n, 0, 30}] (* Rigoberto Florez, Dec 24 2018 *)
PROG
(PARI) vector(31, n, fibonacci(2*n) +6*fibonacci(2*n-2) ) \\ G. C. Greubel, Jan 16 2020
(Magma) [Lucas(2*n-1) + 2*Lucas(2*n+1): n in [0..30]]; // G. C. Greubel, Jan 16 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 26); Coefficients(R!( (1+6*x)/(1-3*x+x^2) )); // Marius A. Burtea, Jan 16 2020
(Sage) [fibonacci(2*n+2) + 6*fibonacci(2*n) for n in (0..30)] # G. C. Greubel, Jan 16 2020
(GAP) List([0..30], n-> Lucas(1, -1, 2*n-1)[2] + 2*Lucas(1, -1, 2*n+1)[2] ); # G. C. Greubel, Jan 16 2020
CROSSREFS
Sequence in context: A048468 A255108 A048771 * A235163 A372668 A084813
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jun 03 2000
STATUS
approved