Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #50 Sep 08 2022 08:45:01
%S 1,9,26,69,181,474,1241,3249,8506,22269,58301,152634,399601,1046169,
%T 2738906,7170549,18772741,49147674,128670281,336863169,881919226,
%U 2308894509,6044764301,15825398394,41431430881,108468894249
%N a(n) = 3*a(n-1) - a(n-2) with a(0)=1, a(1)=9.
%D A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
%H G. C. Greubel, <a href="/A055849/b055849.txt">Table of n, a(n) for n = 0..1000</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-1).
%F a(n) = (9*(((3+sqrt(5))/2)^n - ((3-sqrt(5))/2)^n) - (((3+sqrt(5))/2)^(n-1) - ((3-sqrt(5))/2)^(n-1)))/sqrt(5).
%F G.f.: (1+6*x)/(1-3*x+x^2).
%F a(n) = L(2*n-1) + 2*L(2*n+1), where L(n) is the n-th Lucas number. - _Rigoberto Florez_, Dec 24 2018
%F a(n) = Fibonacci(2*n+2) + 6*Fibonacci(2*n). - _G. C. Greubel_, Jan 16 2020
%p with(combinat); seq( fibonacci(2*n+2) + 6*fibonacci(2*n), n=0..30); # _G. C. Greubel_, Jan 16 2020
%t LinearRecurrence[{3,-1},{1,9},30] (* _Harvey P. Dale_, Jan 20 2013 *)
%t Table[LucasL[2n-1]+2LucasL[2n+1], {n,0,30}] (* _Rigoberto Florez_, Dec 24 2018 *)
%o (PARI) vector(31, n, fibonacci(2*n) +6*fibonacci(2*n-2) ) \\ _G. C. Greubel_, Jan 16 2020
%o (Magma) [Lucas(2*n-1) + 2*Lucas(2*n+1): n in [0..30]]; // _G. C. Greubel_, Jan 16 2020
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 26); Coefficients(R!( (1+6*x)/(1-3*x+x^2) )); // _Marius A. Burtea_, Jan 16 2020
%o (Sage) [fibonacci(2*n+2) + 6*fibonacci(2*n) for n in (0..30)] # _G. C. Greubel_, Jan 16 2020
%o (GAP) List([0..30], n-> Lucas(1,-1,2*n-1)[2] + 2*Lucas(1,-1,2*n+1)[2] ); # _G. C. Greubel_, Jan 16 2020
%Y Cf. A000032, A000045.
%K easy,nonn
%O 0,2
%A _Barry E. Williams_, Jun 03 2000