login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055853
Convolution of A055852 with A011782.
4
0, 1, 8, 43, 190, 743, 2668, 8989, 28814, 88720, 264224, 765088, 2162624, 5986304, 16268800, 43499264, 114629120, 298147840, 766361600, 1948794880, 4907171840, 12245598208, 30305419264, 74425892864, 181481635840, 439603953664
OFFSET
0,3
COMMENTS
Eighth column of triangle A055587.
T(n,6) of array T as in A049600.
LINKS
FORMULA
a(n) = T(n, 6)= A055587(n+6, 7).
G.f.: x*(1-x)^6/(1-2*x)^7.
MAPLE
seq(coeff(series(x*(1-x)^6/(1-2*x)^7, x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 16 2020
MATHEMATICA
CoefficientList[Series[x*(1-x)^6/(1-2*x)^7, {x, 0, 30}], x] (* G. C. Greubel, Jan 16 2020 *)
PROG
(PARI) my(x='x+O('x^30)); concat([0], Vec(x*(1-x)^6/(1-2*x)^7)) \\ G. C. Greubel, Jan 16 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x*(1-x)^6/(1-2*x)^7 )); // G. C. Greubel, Jan 16 2020
(Sage)
def A055853_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x*(1-x)^6/(1-2*x)^7 ).list()
A055853_list(30) # G. C. Greubel, Jan 16 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang May 30 2000
STATUS
approved