login
A055853
Convolution of A055852 with A011782.
4
0, 1, 8, 43, 190, 743, 2668, 8989, 28814, 88720, 264224, 765088, 2162624, 5986304, 16268800, 43499264, 114629120, 298147840, 766361600, 1948794880, 4907171840, 12245598208, 30305419264, 74425892864, 181481635840, 439603953664
OFFSET
0,3
COMMENTS
Eighth column of triangle A055587.
T(n,6) of array T as in A049600.
LINKS
FORMULA
a(n) = T(n, 6)= A055587(n+6, 7).
G.f.: x*(1-x)^6/(1-2*x)^7.
MAPLE
seq(coeff(series(x*(1-x)^6/(1-2*x)^7, x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 16 2020
MATHEMATICA
CoefficientList[Series[x*(1-x)^6/(1-2*x)^7, {x, 0, 30}], x] (* G. C. Greubel, Jan 16 2020 *)
PROG
(PARI) my(x='x+O('x^30)); concat([0], Vec(x*(1-x)^6/(1-2*x)^7)) \\ G. C. Greubel, Jan 16 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x*(1-x)^6/(1-2*x)^7 )); // G. C. Greubel, Jan 16 2020
(Sage)
def A055853_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x*(1-x)^6/(1-2*x)^7 ).list()
A055853_list(30) # G. C. Greubel, Jan 16 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang May 30 2000
STATUS
approved