login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094865
Expansion of x^3/((1-3*x+x^2)*(1-5*x+5*x^2)).
5
0, 0, 0, 1, 8, 43, 196, 820, 3264, 12597, 47652, 177859, 657800, 2417416, 8844448, 32256553, 117378336, 426440955, 1547491404, 5610955132, 20332248992, 73645557469, 266668876540, 965384509651, 3494279574288, 12646311635088, 45764967830976, 165605867248465
OFFSET
0,5
COMMENTS
With a different offset, number of sequences (s(0), s(1), ..., s(2k+1)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2k+1, with s(0) = 1 and s(2n+1) = 8.
LINKS
Roger L. Bagula and Gary W. Adamson, Comments on this sequence
László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
FORMULA
a(n) = (1/5)*Sum_{r=1..9} sin(r*Pi/10)*sin(4*r*Pi/5)*(2*cos(r*Pi/10))^(2*n+1).
a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4).
a(n) = A093129(n)/2 - A122367(n)/2. - R. J. Mathar, Jun 24 2011
a(n) = 2^(-2-n)*(-(3-sqrt(5))^n*(-1+sqrt(5)) + (5-sqrt(5))^n*(1+sqrt(5)) - (1+sqrt(5))*(3+sqrt(5))^n + (-1+sqrt(5))*(5+sqrt(5))^n)/sqrt(5). - Colin Barker, Apr 27 2016
MATHEMATICA
CoefficientList[Series[x^3/((1-3x+x^2)(1-5x+5x^2)), {x, 0, 30}], x] (* or *) LinearRecurrence[{8, -21, 20, -5}, {0, 0, 0, 1}, 30] (* Harvey P. Dale, Jun 07 2014 *)
PROG
(PARI) x='x+O('x^66); concat([0, 0, 0], Vec(x^3/((1-3*x+x^2)*(1-5*x+5*x^2)))) \\ Joerg Arndt, May 01 2013
CROSSREFS
Cf. A005024 is a truncated version.
Sequence in context: A055853 A137748 A005024 * A122880 A171479 A227209
KEYWORD
nonn,easy
AUTHOR
Herbert Kociemba, Jun 15 2004
EXTENSIONS
Edited by N. J. A. Sloane, Aug 09 2008
STATUS
approved