OFFSET
0,5
COMMENTS
With a different offset, number of sequences (s(0), s(1), ..., s(2k+1)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2k+1, with s(0) = 1 and s(2n+1) = 8.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Roger L. Bagula and Gary W. Adamson, Comments on this sequence
László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
Index entries for linear recurrences with constant coefficients, signature (8,-21,20,-5).
FORMULA
a(n) = (1/5)*Sum_{r=1..9} sin(r*Pi/10)*sin(4*r*Pi/5)*(2*cos(r*Pi/10))^(2*n+1).
a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4).
a(n) = 2^(-2-n)*(-(3-sqrt(5))^n*(-1+sqrt(5)) + (5-sqrt(5))^n*(1+sqrt(5)) - (1+sqrt(5))*(3+sqrt(5))^n + (-1+sqrt(5))*(5+sqrt(5))^n)/sqrt(5). - Colin Barker, Apr 27 2016
MATHEMATICA
CoefficientList[Series[x^3/((1-3x+x^2)(1-5x+5x^2)), {x, 0, 30}], x] (* or *) LinearRecurrence[{8, -21, 20, -5}, {0, 0, 0, 1}, 30] (* Harvey P. Dale, Jun 07 2014 *)
PROG
(PARI) x='x+O('x^66); concat([0, 0, 0], Vec(x^3/((1-3*x+x^2)*(1-5*x+5*x^2)))) \\ Joerg Arndt, May 01 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Herbert Kociemba, Jun 15 2004
EXTENSIONS
Edited by N. J. A. Sloane, Aug 09 2008
STATUS
approved