Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Feb 12 2022 17:51:33
%S 0,0,0,1,8,43,196,820,3264,12597,47652,177859,657800,2417416,8844448,
%T 32256553,117378336,426440955,1547491404,5610955132,20332248992,
%U 73645557469,266668876540,965384509651,3494279574288,12646311635088,45764967830976,165605867248465
%N Expansion of x^3/((1-3*x+x^2)*(1-5*x+5*x^2)).
%C With a different offset, number of sequences (s(0), s(1), ..., s(2k+1)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2k+1, with s(0) = 1 and s(2n+1) = 8.
%H Colin Barker, <a href="/A094865/b094865.txt">Table of n, a(n) for n = 0..1000</a>
%H Roger L. Bagula and Gary W. Adamson, <a href="/A094865/a094865.txt">Comments on this sequence</a>
%H László Németh and László Szalay, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL24/Nemeth/nemeth8.html">Sequences Involving Square Zig-Zag Shapes</a>, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (8,-21,20,-5).
%F a(n) = (1/5)*Sum_{r=1..9} sin(r*Pi/10)*sin(4*r*Pi/5)*(2*cos(r*Pi/10))^(2*n+1).
%F a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4).
%F a(n) = A093129(n)/2 - A122367(n)/2. - _R. J. Mathar_, Jun 24 2011
%F a(n) = 2^(-2-n)*(-(3-sqrt(5))^n*(-1+sqrt(5)) + (5-sqrt(5))^n*(1+sqrt(5)) - (1+sqrt(5))*(3+sqrt(5))^n + (-1+sqrt(5))*(5+sqrt(5))^n)/sqrt(5). - _Colin Barker_, Apr 27 2016
%t CoefficientList[Series[x^3/((1-3x+x^2)(1-5x+5x^2)),{x,0,30}],x] (* or *) LinearRecurrence[{8,-21,20,-5},{0,0,0,1},30] (* _Harvey P. Dale_, Jun 07 2014 *)
%o (PARI) x='x+O('x^66); concat([0,0,0],Vec(x^3/((1-3*x+x^2)*(1-5*x+5*x^2)))) \\ _Joerg Arndt_, May 01 2013
%Y Cf. A005024 is a truncated version.
%K nonn,easy
%O 0,5
%A _Herbert Kociemba_, Jun 15 2004
%E Edited by _N. J. A. Sloane_, Aug 09 2008