|
|
A122367
|
|
Dimension of 3-variable non-commutative harmonics (twisted derivative). The dimension of the space of non-commutative polynomials in 3 variables which are killed by all symmetric differential operators (where for a monomial w, d_{xi} ( xi w ) = w and d_{xi} ( xj w ) = 0 for i/=j).
|
|
33
|
|
|
1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, 75025, 196418, 514229, 1346269, 3524578, 9227465, 24157817, 63245986, 165580141, 433494437, 1134903170, 2971215073, 7778742049, 20365011074, 53316291173, 139583862445, 365435296162, 956722026041
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Essentially identical to A001519.
From Matthew Lehman, Jun 14 2008: (Start)
Number of monotonic rhythms using n time intervals of equal duration (starting with n=0).
Representationally, let O be an interval which is "off" (rest),
X an interval which is "on" (beep),
X X two consecutive "on" intervals (beep, beep),
X O X (beep, rest, beep) and
X-X two connected consecutive "on" intervals (beeeep).
For f(3)=13:
O O O, O O X, O X O, O X X, O X-X, X O O, X O X,
X X O, X-X O, X X X, X X-X, X-X X, X-X-X.
(End)
Equivalent to the number of one-dimensional graphs of n nodes, subject to the condition that a node is either 'on' or 'off' and that any two neighboring 'on' nodes can be connected. - Matthew Lehman, Nov 22 2008
Sum_{n>=0} arctan(1/a(n)) = Pi/2. - Jaume Oliver Lafont, Feb 27 2009
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 0..1000
Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876 (See Corollary 1 (ii)).
P. Barry, A. Hennessy, The Euler-Seidel Matrix, Hankel Matrices and Moment Sequences, J. Int. Seq. 13 (2010) # 10.8.2, Example 13
N. Bergeron, C. Reutenauer, M. Rosas and M. Zabrocki, Invariants and Coinvariants of the Symmetric Group in Noncommuting Variables, arXiv:math/0502082 [math.CO], 2005; Canad. J. Math. 60 (2008), no. 2, 266-296
C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782.
I. M. Gessel, Ji Li, Compositions and Fibonacci identities, J. Int. Seq. 16 (2013) 13.4.5
Tanya Khovanova, Recursive Sequences
Ron Knott, Pi and the Fibonacci numbers. - Jaume Oliver Lafont, Feb 27 2009
M. C. Wolf, Symmetric functions of noncommutative elements, Duke Math. J. 2 (1936), 626-637.
Index entries for linear recurrences with constant coefficients, signature (3,-1).
|
|
FORMULA
|
G.f.: (1-q)/(1-3*q+q^2). More generally, sum( n!/(n-d)!*q^d/prod((1-r*q),r=1..d), d=0..n)/sum( q^d/prod((1-r*q),r=1..d), d=0..n) where n=3.
a(n) = 3*a(n-1)-a(n-2) with a(0) = 1, a(1) = 2.
a(n) = Fibonacci(2n+1) = A000045(2n+1). - Philippe Deléham, Feb 11 2009
a(n) = (2^(-1-n)*((3-sqrt(5))^n*(-1+sqrt(5)) + (1+sqrt(5))*(3+sqrt(5))^n)) / sqrt(5). - Colin Barker, Oct 14 2015
a(n) = Sum_{k=0..n} Sum_{i=0..n} C(k+i-1,k-i). - Wesley Ivan Hurt, Sep 21 2017
|
|
EXAMPLE
|
a(1) = 2 because x1-x2, x1-x3 are both of degree 1 and are killed by the differential operator d_x1+d_x2+d_x3.
a(2) = 5 because x1 x2 - x3 x2, x1 x3 - x2 x3, x2 x1 - x3 x1, x1 x1 - x2 x1 - x2 x2 + x1 x2, x1 x1 - x3 x1 - x3 x3 + x3 x1 are all linearly independent and are killed by d_x1+d_x2+d_x3, d_x1 d_x1 + d_x2 d_x2 + d_x3 d_x3 and sum( d_xi d_xj, i,j = 1..3).
|
|
MAPLE
|
a:=n->if n=0 then 1; elif n=1 then 2 else 3*a(n-1)-a(n-2); fi;
|
|
MATHEMATICA
|
Table[Fibonacci[2 n + 1], {n, 0, 30}] (* Vincenzo Librandi, Jul 04 2015 *)
|
|
PROG
|
(MAGMA) [Fibonacci(2*n+1): n in [0..40]]; // Vincenzo Librandi, Jul 04 2015
(PARI) Vec((1-x)/(1-3*x+x^2) + O(x^50)) \\ Michel Marcus, Jul 04 2015
|
|
CROSSREFS
|
Cf. A001519, A055105, A055107, A087903, A074664, A008277, A112340, A122368, A122369, A122370, A122371, A122372.
Cf. similar sequences listed in A238379.
Sequence in context: A001519 A048575 A099496 * A114299 A112842 A097417
Adjacent sequences: A122364 A122365 A122366 * A122368 A122369 A122370
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Mike Zabrocki, Aug 30 2006
|
|
STATUS
|
approved
|
|
|
|