This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099496 a(n) = (-1)^n * Fibonacci(2*n+1). 5
 1, -2, 5, -13, 34, -89, 233, -610, 1597, -4181, 10946, -28657, 75025, -196418, 514229, -1346269, 3524578, -9227465, 24157817, -63245986, 165580141, -433494437, 1134903170, -2971215073, 7778742049, -20365011074, 53316291173, -139583862445, 365435296162, -956722026041 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS With interpolated zeros, a Chebyshev transform of A056594, which has g.f. 1/(1+x^2). The image of G(x) under the Chebyshev transform is (1/(1+x^2))G(x/(1+x^2)). a(n) is the ceiling of the inverse fractional error in approximating phi, the golden section, by the ratio of two successive terms in the Fibonacci series. - Adam Helman (helman(AT)san.rr.com), May 09 2010 LINKS Indranil Ghosh, Table of n, a(n) for n = 0..2386 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (-3,-1). FORMULA G.f.: (1+x)/(1+3x+x^2); (with interpolated zeros) (1+x^2)/(1+3x^2+x^4); a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)(-1)^k*cos((n-2k)*Pi/2) (with interpolated zeros); a(n) = Fibonacci(n+1)(-1)^(n/2)(1 + (-1)^n)/2 (with interpolated zeros). a(n) = (-1)^n * Sum_{k=0..n+1} binomial(n+k,n-k). - Paolo P. Lava, Apr 13 2007 a(n) = -3*a(n-1) - a(n-2), a(0)=1, a(1)=-2. - Philippe Deléham, Nov 03 2008 From Adam Helman (helman(AT)san.rr.com), May 09 2010: (Start) a(n) = ceiling( phi / (Fibonacci(n+1)/Fibonacci(n) - phi) ). An exact expression for the inverse fractional error is phi / (Fibonacci(n+1)/Fibonacci(n) - phi) = (phi/sqrt(5)) * ((-1)^n *(phi^2n) - 1). (End) a(n) = (-1)^n*A122367(n). - R. J. Mathar, Jul 23 2010 EXAMPLE The first term: a(1) = ceiling( phi / (Fibonacci(2)/Fibonacci(1) - phi) ) = -2. - Adam Helman (helman(AT)san.rr.com), May 09 2010 a(3) = (-1)^3 * Fibonacci(2 * 3 + 1) = -Fibonacci(7) = -13. - Indranil Ghosh, Feb 04 2017 MAPLE seq((-1)^n*combinat:-fibonacci(2*n+1), n=0 .. 100); # Robert Israel, Jul 02 2015 MATHEMATICA Table[(-1)^n Fibonacci[2 n + 1], {n, 0, 30}] (* Harvey P. Dale, Aug 22 2016 *) PROG (MAGMA) [(-1)^n*Fibonacci(2*n+1): n in [0..40]]; // Vincenzo Librandi, Jul 04 2015 CROSSREFS Cf. A056594, A122367. Sequence in context: A001519 A048575 * A122367 A114299 A112842 A097417 Adjacent sequences:  A099493 A099494 A099495 * A099497 A099498 A099499 KEYWORD easy,sign AUTHOR Paul Barry, Oct 19 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 00:07 EST 2018. Contains 318052 sequences. (Running on oeis4.)