login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112340 Triangle read by rows of numbers b_{n,k}, n>=1, 1<=k<=n such that Product_{n,k} 1/(1-q^n t^k)^{b_{n,k}} = 1 + Sum_{i,j>=1} S_{i,j} q^i t^j where S_{i,j} are entries in the table A008277 (the inverse Euler transformation of the table of Stirling numbers of the second kind). 7
1, 1, 0, 1, 2, 0, 1, 5, 3, 0, 1, 13, 16, 4, 0, 1, 28, 67, 34, 5, 0, 1, 60, 249, 229, 65, 6, 0, 1, 123, 853, 1265, 609, 107, 7, 0, 1, 251, 2787, 6325, 4696, 1376, 168, 8, 0, 1, 506, 8840, 29484, 31947, 14068, 2772, 244, 9, 0, 1, 1018, 27503, 131402, 199766, 124859, 36252 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
Row sums equal to A085686, second column = A084174 - 1
The number of set partitions of size n length k which are 'Lyndon,' that is, since all set partitions are isomorphic to sequences of atomic set partitions (A087903), those which are smallest of all rotations of these sequences in lex order (with respect to some ordering on the atomic set partitions) are Lyndon. 1; 1, 0; 1, 2, 0; 1, 5, 3, 0; 1, 13, 16, 4, 0;
LINKS
M. Rosas and B. Sagan, Symmetric Functions in Noncommuting Variables, Transactions of the American Mathematical Society, 358 (2006), no. 1, 215-232.
M. C. Wolf, Symmetric functions for non-commutative elements, Duke Math. J., 2 (1936), 626-637.
EXAMPLE
There are 6 set partitions of size 4 and length 3, {12|3|4}, {13|2|4}, {14|2|3}, {1|23|4}, {1|24|3}, {1|2|34} and the sequences the correspond to are ({12},{1},{1}), ({13|2}, {1}), ({14|2|3}), ({1},{12},{1}), ({1},{13|2}), ({1},{1},{12}). Now there are three {({12},{1},{1}), ({1},{12},{1}), ({1},{1},{12})} that are rotations of each other and ({1}, {1}, {12}) is the smallest of these, {({13|2}, {1}), ({1},{13|2})} are rotations of each other and ({1},{13|2}) is the smallest and ({14|2|3}) is atomic and all atomic s.p. are Lyndon. Hence {1|2|34}, {1|24|3}, {14|2|3} are Lyndon and a(4,3) = 3
Triangle begins:
1;
1, 0;
1, 2, 0;
1, 5, 3, 0;
1, 13, 16, 4, 0;
1, 28, 67, 34, 5, 0;
...
MAPLE
EULERitable:=proc(tbl) local ser, out, i, j, tmp; ser:=1+add(add(q^i*t^j*tbl[i][j], j=1..nops(tbl[i])), i=1..nops(tbl)); out:=[]; for i from 1 to nops(tbl) do tmp:=coeff(ser, q, i); ser:=expand(ser*mul(add((-q^i*t^j)^k*choose(abs(coeff(tmp, t, j)), k), k=0..nops(tbl)/i), j = 1..degree(tmp, t))); ser:=subs({seq(q^j=0, j=nops(tbl)+1..degree(ser, q))}, ser); out:=[op(out), [seq(abs(coeff(tmp, t, j)), j=1..degree(tmp, t))]]; end do; out; end: EULERitable([seq([seq(combinat[stirling2](n, k), k=1..n)], n=1..10)]);
MATHEMATICA
nmax = 11; b[n_, k_] /; k < 1 || k > n = 0;
coes[m_] := Product[1/(1 - q^n t^k)^b[n, k], {n, 1, m}, {k, 1, m}] - 1 - Sum[ StirlingS2[i, j] q^i t^j, {i, 1, m}, {j, 1, m}] + O[t]^m + O[q]^m // Normal // CoefficientList[#, {t, q}]&;
sol[1] = {b[1, 1] -> 1};
Do[sol[m] = Solve[Thread[(coes[m] /. sol[m - 1]) == 0]], {m, 2, nmax + 1}];
bb = Flatten[Table[sol[m], {m, 1, nmax + 1}]];
Table[b[n, k] /. bb, {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 11 2017 *)
CROSSREFS
Sequence in context: A079134 A175528 A163940 * A356264 A037186 A343239
KEYWORD
nonn,tabl
AUTHOR
Mike Zabrocki, Sep 05 2005; Aug 06 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 16 18:22 EDT 2024. Contains 371750 sequences. (Running on oeis4.)