

A163940


Triangle related to the divergent series 1^m*1!  2^m*2! + 3^m*3!  4^m*4! + ... for m >= 1.


12



1, 1, 0, 1, 2, 0, 1, 5, 3, 0, 1, 9, 17, 4, 0, 1, 14, 52, 49, 5, 0, 1, 20, 121, 246, 129, 6, 0, 1, 27, 240, 834, 1039, 321, 7, 0, 1, 35, 428, 2250, 5037, 4083, 769, 8, 0, 1, 44, 707, 5214, 18201, 27918, 15274, 1793, 9, 0, 1, 54, 1102, 10829, 54111, 133530, 145777, 55152
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


COMMENTS

The divergent series g(x,m) = sum((1)^(k+1)*k^m*k!*x^k, k= 1..infinity), m >= 1, are related to the higher order exponential integrals E(x,m,n=1), see A163931.
Hardy, see the link below, describes how Euler came to the rather surprising conclusion that g(x,1) = exp(1/x)*Ei(1,1/x) with Ei(1,x) = E(x,m=1,n=1). From this result it follows inmediately that g(x,0) = 1  g(x,1). Following in Euler's footsteps we discovered that g(x,m) = (1)^(m) * (M(x,m)*x  ST(x,m)* Ei(1,1/x) * exp(1/x))/x^(m+1), m => 1.
So g(x=1,m) = (1)^m*(A040027(m)  A000110 (m+1)*A073003), with A040027(m = 1) = 0. We observe that A073003 =  exp(1)*Ei(1) is Gompertz's constant, A000110 are the Bell numbers and A040027 was published a few years ago by Gould.
The polynomial coefficients of the M(x,m) = sum(a(m,k) * x^k, k = 0..m), for m >= 0 lead to the triangle given above. We point out that M(x,m=1) = 0.
The polynomial coefficients of the ST(x,m) = sum(S2(m+1, k) * x^k, k = 0..m+1), m >= 1, lead to the Stirling numbers of the second kind, see A106800.
The formulas that generate the coefficients of the left hand columns lead to the Minkowski numbers A053657. We have a closer look at them in A163972.
The right hand columns have simple generating functions, see the formulas. We used them in the first Maple program to generate the triangle coefficients (n >= 0 and 0 <= k <= n). The second Maple program calculates the values of g(x,m) for m >= 1, at x=1.


LINKS

Table of n, a(n) for n=0..62.
G. H. Hardy, Divergent Series, Oxford University Press, 1949. pp. 2629 and pp. 78.


FORMULA

The generating functions of the right hand columns are Gf(p) = 1/((1(p1)*x)^2 * product((1k*x), k=1..p2)); Gf(1) = 1. For the first right hand column p=1, for the second p=2, etc..
From Peter Bala, Jul 23 2013: (Start)
Conjectural explicit formula: T(n,k) = Stirling2(n,nk) + (nk)*sum {j = 0..k1} (1)^j*Stirling2(n,n+1+jk)*j! for 0 <= k <= n.
The nth row polynomial R(n,x) appears to satisfy the recurrence equation R(n,x) = n*x^(n1) + sum {k = 1..n1} binomial(n,k+1)*x^(nk1)*R(k,x). The row polynomials appear to have only real zeros. (End)


EXAMPLE

The first few triangle rows are:
[1]
[1, 0]
[1, 2, 0]
[1, 5, 3, 0]
[1, 9, 17, 4, 0]
[1, 14, 52, 49, 5, 0]
The first few M(x,m) are:
M(x,m=0) = 1
M(x,m=1) = 1 + 0*x
M(x,m=2) = 1 + 2*x + 0*x^2
M(x,m=3) = 1 + 5*x + 3*x^2 + 0*x^3
The first few ST(x,m) are:
ST(x,m=1) = 1
ST(x,m=0) = 1 + 0*x
ST(x,m=1) = 1 + 1*x + 0*x^2
ST(x,m=2) = 1 + 3*x + x^2 + 0*x^3
ST(x,m=3) = 1 + 6*x + 7*x^2 + x^3 + 0*x^4
The first few g(x,m) are:
g(x,1) = (1)*( (1)*Ei(1,1/x)*exp(1/x))/x^0
g(x,0) = (1)*((1)*x  (1)*Ei(1,1/x)*exp(1/x))/x^1
g(x,1) = (1)*((1)*x  (1+ x)*Ei(1,1/x)*exp(1/x))/x^2
g(x,2) = (1)*((1+2*x)*x  (1+3*x+x^2)*Ei(1,1/x)*exp(1/x))/x^3
g(x,3) = (1)*((1+5*x+3*x^2)*x  (1+6*x+7*x^2+x^3)*Ei(1,1/x)*exp(1/x))/x^4


MAPLE

nmax := 10; for p from 1 to nmax do Gf(p) := convert(series(1/((1(p1)*x)^2*product((1k1*x), k1=1..p2)), x, nmax+1p), polynom); for q from 0 to nmaxp do a(p+q1, q) := coeff(Gf(p), x, q) od: od: seq(seq(a(n, k), k=0..n), n=0..nmax1);
# End program 1
nmax1:=nmax; A040027 := proc(n): if n = 1 then 0 elif n= 0 then 1 else add(binomial(n, k11)*A040027(nk1), k1 = 1..n) fi: end: A000110 := proc(n) option remember; if n <= 1 then 1 else add( binomial(n1, i) * A000110(n1i), i=0..n1); fi; end: A073003 :=  exp(1) * Ei(1): for n from 1 to nmax1 do g(1, n) := (1)^n * (A040027(n)  A000110(n+1) * A073003) od;
# End program 2


CROSSREFS

The row sums equal A040027 (Gould).
A000007, A000027, A000337, A163941 and A163942 are the first five right hand columns.
A000012, A000096, A163943 and A163944 are the first four left hand columns.
Cf. A163931, A163972, A106800 (Stirling2), A000110 (Bell), A073003 (Gompertz), A053657 (Minkowski).
Sequence in context: A293298 A079134 A175528 * A112340 A037186 A004483
Adjacent sequences: A163937 A163938 A163939 * A163941 A163942 A163943


KEYWORD

easy,nonn,tabl


AUTHOR

Johannes W. Meijer, Aug 13 2009


EXTENSIONS

Edited by Johannes W. Meijer, Sep 23 2012


STATUS

approved



