OFFSET
1,2
COMMENTS
The asymptotic expansions of the higher order exponential integral E(x, m=3, n) lead to triangle A163932, see A163931 for information on the E(x,m,n). The o.g.f.s. of the right hand columns of triangle A163932 have a nice structure Gf(p) = W3(z,p)/(1-z)^(2*p+1) with p = 1 for the first right hand column, p = 2 for the second right hand column, etc. The coefficients of the W3(z,p) polynomials lead to the triangle given above, n >= 1 and 1 <= m <= n. The row sums of this triangle lead to A001879, see A163936 for more information.
LINKS
G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
FORMULA
a(n,m) = Sum_{k=0..(m-1)} (-1)^(n+k+1)*binomial(m-k+1,2) *binomial(2*n+1,k) *stirling1(m+n-k,m-k+1), for 1 <= m <= n.
EXAMPLE
The first few W3(z,p) polynomials are:
W3(z,p=1) = 1/(1-z)^3
W3(z,p=2) = (3 + 3*z)/(1-z)^5
W3(z,p=3) = (11 + 28*z + 6*z^2)/(1-z)^7
W3(z,p=4) = (50 + 225*z + 135*z^2 + 10*z^3)/(1-z)^9
MAPLE
with(combinat): a := proc(n, m): add((-1)^(n+k+1)*((m-k+1)*(m-k)/2!)*binomial(2*n+1, k)*stirling1(m+n-k, m-k+1), k=0..m-1) end: seq(seq(a(n, m), m=1..n), n=1..8); # Johannes W. Meijer, revised Nov 27 2012
MATHEMATICA
Table[Sum[(-1)^(n + k + 1)*Binomial[m - k + 1, 2]*Binomial[2*n + 1, k]*StirlingS1[m + n - k, m - k + 1], {k, 0, m - 1}], {n, 1, 50}, {m, 1, n}] // Flatten (* G. C. Greubel, Aug 13 2017 *)
PROG
(PARI) for(n=1, 10, for(m=1, n, print1(sum(k=0, m-1, (-1)^(n+k+1)* binomial(m-k+1, 2)*binomial(2*n+1, k) *stirling(m+n-k, m-k+1, 1)) , ", "))) \\ G. C. Greubel, Aug 13 2017
CROSSREFS
KEYWORD
AUTHOR
Johannes W. Meijer, Aug 13 2009
STATUS
approved