The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322701 The successive approximations up to 2^n for 2-adic integer 3^(1/3). 5
 0, 1, 3, 3, 11, 27, 59, 123, 123, 379, 379, 379, 379, 4475, 12667, 29051, 61819, 127355, 127355, 127355, 127355, 127355, 2224507, 2224507, 2224507, 19001723, 52556155, 119665019, 253882747, 253882747, 253882747, 1327624571, 3475108219, 7770075515 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) is the unique solution to x^3 == 3 (mod 2^n) in the range [0, 2^n - 1]. LINKS Wikipedia, p-adic number FORMULA For n > 0, a(n) = a(n-1) if a(n-1)^3 - 3 is divisible by 2^n, otherwise a(n-1) + 2^(n-1). EXAMPLE 11^3 = 1331 = 83*2^4 + 3; 27^3 = 19683 = 615*2^5 + 3; 59^3 = 205379 = 3209*2^6 + 3. PROG (PARI) a(n) = lift(sqrtn(3+O(2^n), 3)) CROSSREFS For the digits of 3^(1/3), see A323000. Approximations of p-adic cubic roots: this sequence (2-adic, 3^(1/3)); A322926 (2-adic, 5^(1/3)); A322934 (2-adic, 7^(1/3)); A322999 (2-adic, 9^(1/3)); A290567 (5-adic, 2^(1/3)); A290568 (5-adic, 3^(1/3)); A309444 (5-adic, 4^(1/3)); A319097, A319098, A319199 (7-adic, 6^(1/3)); A320914, A320915, A321105 (13-adic, 5^(1/3)). Sequence in context: A281639 A281101 A341601 * A124265 A163938 A109937 Adjacent sequences:  A322698 A322699 A322700 * A322702 A322703 A322704 KEYWORD nonn AUTHOR Jianing Song, Aug 30 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 04:25 EDT 2021. Contains 346273 sequences. (Running on oeis4.)