login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321105
One of the three successive approximations up to 13^n for 13-adic integer 5^(1/3). This is the 11 (mod 13) case (except for n = 0).
12
0, 11, 154, 999, 25166, 82288, 82288, 43523569, 43523569, 4937907895, 121587400998, 1362313827639, 12115276191861, 175201872049228, 2901077831379505, 10775830602778083, 471448867729594896, 6460198350378213465, 23761030189140889331, 361127251045013068718, 4746888122171351400749
OFFSET
0,2
COMMENTS
For n > 0, a(n) is the unique number k in [1, 13^n] and congruent to 11 mod 13 such that k^3 - 5 is divisible by 13^n.
For k not divisible by 13, k is a cube in 13-adic field if and only if k == 1, 5, 8, 12 (mod 13). If k is a cube in 13-adic field, then k has exactly three cubic roots.
EXAMPLE
The unique number k in [1, 13^2] and congruent to 11 modulo 13 such that k^3 - 5 is divisible by 13^2 is k = 154, so a(2) = 154.
The unique number k in [1, 13^3] and congruent to 11 modulo 13 such that k^3 - 5 is divisible by 13^3 is k = 999, so a(3) = 999.
PROG
(PARI) a(n) = lift(sqrtn(5+O(13^n), 3) * (-1-sqrt(-3+O(13^n)))/2)
CROSSREFS
For 5-adic cubic roots, see A290567, A290568, A309444.
Sequence in context: A077577 A157186 A122769 * A051608 A191369 A223713
KEYWORD
nonn
AUTHOR
Jianing Song, Aug 27 2019
STATUS
approved