login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323000
Digits of the 2-adic integer 3^(1/3).
4
1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0
OFFSET
0
FORMULA
a(n) = (A322701(n+1) - A322701(n))/2^n.
a(n) = 0 if A322701(n)^3 - 3 is divisible by 2^(n+1), otherwise a(n) = 1.
EXAMPLE
Equals ...0100110111001111001000011111000101111011.
PROG
(PARI) a(n) = lift(sqrtn(3+O(2^(n+1)), 3))\2^n
CROSSREFS
Cf. A322701.
Digits of p-adic cubic roots:
this sequence (2-adic, 3^(1/3));
A323045 (2-adic, 5^(1/3));
A323095 (2-adic, 7^(1/3));
A323096 (2-adic, 9^(1/3));
A290566 (5-adic, 2^(1/3));
A290563 (5-adic, 3^(1/3));
A309443 (5-adic, 4^(1/3));
A319297, A319305, A319555 (7-adic, 6^(1/3));
A321106, A321107, A321108 (13-adic, 5^(1/3)).
Sequence in context: A286922 A285668 A267813 * A005713 A188031 A305387
KEYWORD
nonn,base
AUTHOR
Jianing Song, Aug 30 2019
STATUS
approved