%I
%S 1,1,0,1,1,1,1,0,1,0,0,0,1,1,1,1,1,0,0,0,0,1,0,0,1,1,1,1,0,0,1,1,1,0,
%T 1,1,0,0,1,0,1,0,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,1,1,0,1,0,0,0,1,
%U 0,0,0,0,1,0,0,1,1,1,0,1,0,0,1,1,1,0,0,0
%N Digits of the 2adic integer 3^(1/3).
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Padic_number">padic number</a>
%F a(n) = (A322701(n+1)  A322701(n))/2^n.
%F a(n) = 0 if A322701(n)^3  3 is divisible by 2^(n+1), otherwise a(n) = 1.
%e Equals ...0100110111001111001000011111000101111011.
%o (PARI) a(n) = lift(sqrtn(3+O(2^(n+1)), 3))\2^n
%Y Cf. A322701.
%Y Digits of padic cubic roots:
%Y this sequence (2adic, 3^(1/3));
%Y A323045 (2adic, 5^(1/3));
%Y A323095 (2adic, 7^(1/3));
%Y A323096 (2adic, 9^(1/3));
%Y A290566 (5adic, 2^(1/3));
%Y A290563 (5adic, 3^(1/3));
%Y A309443 (5adic, 4^(1/3));
%Y A319297, A319305, A319555 (7adic, 6^(1/3));
%Y A321106, A321107, A321108 (13adic, 5^(1/3)).
%K nonn,base
%O 0
%A _Jianing Song_, Aug 30 2019
