login
A323095
Digits of the 2-adic integer 7^(1/3).
4
1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1
OFFSET
0
FORMULA
a(n) = (A322934(n+1) - A322934(n))/2^n.
a(n) = 0 if A322934(n)^3 - 7 is divisible by 2^(n+1), otherwise a(n) = 1.
EXAMPLE
Equals ...1111110101110000010111111010110110010111.
PROG
(PARI) a(n) = lift(sqrtn(7+O(2^(n+1)), 3))\2^n
CROSSREFS
Cf. A322934.
Digits of p-adic cubic roots:
A323000 (2-adic, 3^(1/3));
A323045 (2-adic, 5^(1/3));
this sequence (2-adic, 7^(1/3));
A323096 (2-adic, 9^(1/3));
A290566 (5-adic, 2^(1/3));
A290563 (5-adic, 3^(1/3));
A309443 (5-adic, 4^(1/3));
A319297, A319305, A319555 (7-adic, 6^(1/3));
A321106, A321107, A321108 (13-adic, 5^(1/3)).
Sequence in context: A189141 A082416 A093996 * A336868 A083187 A187036
KEYWORD
nonn,base
AUTHOR
Jianing Song, Aug 30 2019
STATUS
approved