login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124265
Variant sequence generated by solving the order n x n linear problem [H]x = b where b is the unit vector and the sequence term is given by the denominator of the last unknown xn.
0
3, 3, 11, 27, 162, 380, 7650, 17325, 81340, 2518992, 91128240, 424947600, 14078156400, 33300661680, 424624548348
OFFSET
1,1
FORMULA
[H] is defined by hilbertWarrenA1[i,j]:=(1+j+i)/(-1+j+i) where numbering starts at 1.
PROG
(Maxima) HilbertWarren(fun, order) := ( Unity[i, j] := 1, A : genmatrix(fun, order, order), B : genmatrix(Unity, 1, order), App : invert(triangularize(A)), Xp : App . B, 1/Xp[order] ); findWarrenSequenceTerms(fun, a, b) := ( L : append(), for order: a next order+1 through b do L: cons(first(HilbertWarren(fun, order)), L), S : reverse(L) ); k : 15; hilbert[i, j] := 1/(i + j - 1); findWarrenSequenceTerms(hilbert, 1, k); hilbertA0[i, j] := (i + j + 0)/(i + j - 1); /* sum 1 */ findWarrenSequenceTerms(hilbertA0, 1, k); hilbertA1[i, j] := (i + j + 1)/(i + j - 1); /* sum 2: there are lots of these, increment numerator */ findWarrenSequenceTerms(hilbertA1, 1, k); hilbertD1[i, j] := (i - j + 1)/(i + j - 1); /* difference 1 */ findWarrenSequenceTerms(hilbertD1, 1, k); hilbertP1[i, j] := (i * j + 0)/(i + j - 1); /* product 1 */ findWarrenSequenceTerms(hilbertP1, 1, k); hilbertQ1[i, j] := (i / j)/(i + j - 1); /* quotient 1 */ findWarrenSequenceTerms(hilbertQ1, 1, k);
CROSSREFS
Sequence in context: A281101 A341601 A322701 * A163938 A373393 A109937
KEYWORD
eigen,frac,hard,nonn
AUTHOR
L. Van Warren (van(AT)wdv.com), Oct 23 2006
STATUS
approved