login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124266
Variant sequence generated by solving the order n x n linear problem [H]x = b where b is the unit vector and the sequence term is given by the denominator of the last unknown xn.
0
1, 1, 1, 3, 6, 10, 150, 525, 980, 24696, 740880, 2910600, 82328400, 168185160, 1870592724
OFFSET
1,4
FORMULA
[H] is defined by hilbertWarrenA1[i,j]:=(1-j+i)/(-1+j+i) where numbering starts at 1.
PROG
(Maxima) HilbertWarren(fun, order) := ( Unity[i, j] := 1, A : genmatrix(fun, order, order), B : genmatrix(Unity, 1, order), App : invert(triangularize(A)), Xp : App . B, 1/Xp[order] ); findWarrenSequenceTerms(fun, a, b) := ( L : append(), for order: a next order+1 through b do L: cons(first(HilbertWarren(fun, order)), L), S : reverse(L) ); k : 15; hilbert[i, j] := 1/(i + j - 1); findWarrenSequenceTerms(hilbert, 1, k); hilbertA0[i, j] := (i + j + 0)/(i + j - 1); /* sum 1 */ findWarrenSequenceTerms(hilbertA0, 1, k); hilbertA1[i, j] := (i + j + 1)/(i + j - 1); /* sum 2: there are lots of these, increment numerator */ findWarrenSequenceTerms(hilbertA1, 1, k); hilbertD1[i, j] := (i - j + 1)/(i + j - 1); /* difference 1 */ findWarrenSequenceTerms(hilbertD1, 1, k); hilbertP1[i, j] := (i * j + 0)/(i + j - 1); /* product 1 */ findWarrenSequenceTerms(hilbertP1, 1, k); hilbertQ1[i, j] := (i / j)/(i + j - 1); /* quotient 1 */ findWarrenSequenceTerms(hilbertQ1, 1, k);
CROSSREFS
Sequence in context: A368173 A125567 A254957 * A137941 A353998 A355181
KEYWORD
eigen,frac,hard,nonn
AUTHOR
L. Van Warren (van(AT)wdv.com), Oct 23 2006
STATUS
approved