login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137941
G.f.: exp(x) = Product_{n>=1} [1 + a(2n-1)*x^(2n-1)/(2n-1)! + a(2n)*x^(2n)/(2n)! ].
0
1, 1, 1, -3, 6, 10, -195, 945, -3080, 17136, 37170, -796950, 3880800, 122007600, -2380685307, 18531377865, -136619683200, 942469528000, 723819456360, -118481659031736, 1884943573381440, -16067035945724400, -323306803861791750, 15940746503392961250
OFFSET
1,4
COMMENTS
a(n) appears to be divisible by (n-1)(n-2)/2 for n>2.
EXAMPLE
exp(x) = (1 + 1*x + 1*x^2/2!) * (1 + 1*x^3/3! - 3*x^4/4!) * (1 + 6*x^5/5! + 10*x^6/6!) * (1 - 195*x^7/7! + 945*x^8/8!) *...
PROG
(PARI) {a(n)=if(n<1, 0, n!*polcoeff(exp(x +x*O(x^n))/prod(k=1, (n-1)\2, 1+a(2*k-1)*x^(2*k-1)/(2*k-1)!+a(2*k)*x^(2*k)/(2*k)! +x*O(x^n)), n))}
CROSSREFS
Cf. A137852.
Sequence in context: A125567 A254957 A124266 * A353998 A355181 A375715
KEYWORD
sign
AUTHOR
Paul D. Hanna, Feb 23 2008
STATUS
approved