login
A368173
Expansion of e.g.f. -log(1 - x^2/2 * (exp(x) - 1)).
2
0, 0, 0, 3, 6, 10, 105, 651, 2968, 26496, 265905, 2203795, 22830456, 288661308, 3476579197, 44960585775, 671394654960, 10329701480416, 164573071219233, 2865785889662019, 52647629639499280, 1000194250108913580, 20125846165307543661, 426789766980101676943
OFFSET
0,4
FORMULA
a(n) = n! * Sum_{k=1..floor(n/3)} (k-1)! * Stirling2(n-2*k,k)/(2^k * (n-2*k)!).
PROG
(PARI) a(n) = n!*sum(k=1, n\3, (k-1)!*stirling(n-2*k, k, 2)/(2^k*(n-2*k)!));
CROSSREFS
Cf. A353998.
Sequence in context: A350993 A308849 A354000 * A125567 A254957 A124266
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 14 2023
STATUS
approved