login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368172
The number of divisors of the largest cubefull exponentially odd divisor of n (A368170).
1
1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 4, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 4, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 1
OFFSET
1,8
COMMENTS
First differs from A365487 at n = 32.
LINKS
FORMULA
a(n) = A000005(A368170(n)).
Multiplicative with a(p^e) = 1 if e <= 2, a(p^e) = e+1 if e is odd and e > 1, and a(p^e) = e otherwise.
a(n) >= 1, with equality if and only if n is cubefree (A004709).
a(n) <= A000005(n), with equality if and only if n is in A335988.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2) * Product_{p prime} (1 - 1/p^2 + 3/p^3 - 1/p^5) = 1.69824776889117043774... .
MATHEMATICA
f[p_, e_] := If[e <= 2, 1, If[EvenQ[e], e, e + 1]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f=factor(n)); prod(i=1, #f~, if(f[i, 2] <= 2, 1, if(!(f[i, 2]%2), f[i, 2], f[i, 2]+1)))};
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Dec 14 2023
STATUS
approved