login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336649
Sum of divisors of A336651(n) (odd part of n divided by its largest squarefree divisor).
5
1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 6, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 8, 6, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 6, 1, 1, 1, 1, 1, 40, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 8, 4, 6, 1, 1, 1, 1, 1
OFFSET
1,9
LINKS
FORMULA
Multiplicative with a(2^e) = 1, a(p^1) = 1 and a(p^e) = (p^e - 1)/(p-1) if e > 1.
a(n) = A000203(A336651(n)) = A335341(A000265(n)).
a(n) = A336652(n) / A204455(n).
Dirichlet g.f.: zeta(s-1) * zeta(s) * (1 - 1/(1-2^s+2^(2*s-1))) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^(2*s-1)). - Amiram Eldar, Dec 18 2023
MATHEMATICA
f[2, e_] := 1; f[p_, e_] := (p^e - 1)/(p-1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 07 2020 *)
PROG
(PARI) A336649(n) = { my(f=factor(n)); prod(i=1, #f~, if((2==f[i, 1])||(1==f[i, 2]), 1, (((f[i, 1]^(f[i, 2]))-1) / (f[i, 1]-1)))); };
(PARI)
A000265(n) = (n>>valuation(n, 2));
A335341(n) = if(1==n, n, sigma(n/factorback(factorint(n)[, 1])));
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Jul 30 2020
STATUS
approved