login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370703
Triangle read by rows: T(n, k) = denominator([x^k] n! [t^n] (t/2 + sqrt(1 + (t/2)^2))^(2*x)).
1
1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 64, 1, 16, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 256, 1, 16, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1024, 1, 256, 1, 32, 1, 8, 1, 4, 1, 1
OFFSET
0,8
EXAMPLE
Triangle starts:
[0] 1;
[1] 1, 1;
[2] 1, 1, 1;
[3] 1, 4, 1, 1;
[4] 1, 1, 1, 1, 1;
[5] 1, 16, 1, 2, 1, 1;
[6] 1, 1, 1, 1, 1, 1, 1;
[7] 1, 64, 1, 16, 1, 4, 1, 1;
[8] 1, 1, 1, 1, 1, 1, 1, 1, 1;
[9] 1, 256, 1, 16, 1, 8, 1, 1, 1, 1;
MAPLE
gf := (t/2 + sqrt(1 + (t/2)^2))^(2*x): ser := series(gf, t, 20):
ct := n -> n!*coeff(ser, t, n): T := (n, k) -> denom(coeff(ct(n), x, k)):
seq(seq(T(n, k), k = 0..n), n = 0..11);
CROSSREFS
Cf. A370705 (numerators).
Sequence in context: A360164 A360163 A336649 * A365487 A368172 A359594
KEYWORD
nonn,tabl,frac
AUTHOR
Peter Luschny, Mar 02 2024
STATUS
approved