login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A336651 Odd part of n divided by its largest squarefree divisor. 9
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 5, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 1, 1, 1, 1, 1, 27, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 7, 3, 5, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,9
COMMENTS
The name can be parsed either as "Odd part of {n divided by its largest squarefree divisor}" or "Odd part of n, divided by its largest squarefree divisor". Because A000265 and A003557 commute, both interpretations yield equal results.
LINKS
FORMULA
Multiplicative with a(2^e) = 1, and for odd primes p, a(p^e) = p^(e-1).
a(n) = A003557(A000265(n)) = A000265(A003557(n)).
a(n) = A000265(n) / A204455(n).
A000203(a(n)) = A336649(n).
Dirichlet g.f.: (1 - 1/(2^s-1)^2) * zeta(s-1) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^s). - Amiram Eldar, Sep 14 2023
MATHEMATICA
f[2, e_] := 1; f[p_, e_] := p^(e-1); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 07 2020 *)
PROG
(PARI) A336651(n) = { my(f=factor(n)); prod(i=1, #f~, if(2==f[i, 1], 1, f[i, 1]^(f[i, 2]-1))); };
CROSSREFS
Sequence in context: A030576 A101874 A318449 * A066715 A082457 A356307
KEYWORD
nonn,easy,mult
AUTHOR
Antti Karttunen, Jul 30 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 07:03 EST 2023. Contains 367429 sequences. (Running on oeis4.)