|
|
A336651
|
|
Odd part of n divided by its largest squarefree divisor.
|
|
9
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 5, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 1, 1, 1, 1, 1, 27, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 7, 3, 5, 1, 1, 1, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,9
|
|
COMMENTS
|
The name can be parsed either as "Odd part of {n divided by its largest squarefree divisor}" or "Odd part of n, divided by its largest squarefree divisor". Because A000265 and A003557 commute, both interpretations yield equal results.
|
|
LINKS
|
|
|
FORMULA
|
Multiplicative with a(2^e) = 1, and for odd primes p, a(p^e) = p^(e-1).
Dirichlet g.f.: (1 - 1/(2^s-1)^2) * zeta(s-1) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^s). - Amiram Eldar, Sep 14 2023
|
|
MATHEMATICA
|
f[2, e_] := 1; f[p_, e_] := p^(e-1); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 07 2020 *)
|
|
PROG
|
(PARI) A336651(n) = { my(f=factor(n)); prod(i=1, #f~, if(2==f[i, 1], 1, f[i, 1]^(f[i, 2]-1))); };
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,mult
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|