login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A336653 First differences of A271215. 0
-1, 1, 3, 20, 160, 1727, 22341, 337947, 5799881, 111180832, 2352448424, 54449597409, 1368516031855, 37118127188225, 1080644471447419, 33614180067524196, 1112586937337720904, 39043623554061199807, 1448021297870473796645, 56592256120004219495755, 2324706946641972649074513 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

a(n) is the number of epsilon-paths of the n-cube for n>=2.

LINKS

Table of n, a(n) for n=1..21.

Kristin DeSplinter, Satyan L. Devadoss, Jordan Readyhough, and Bryce Wimberly, Unfolding cubes: nets, packings, partitions, chords, arXiv:2007.13266 [math.CO], 2020. See Table 1 p. 15.

FORMULA

a(n) = A271215(n) - A271215(n-1).

PROG

(PARI) f(n) = sum(k=0, n, (2*n-k)! / (k! * (n-k)!) * (-1/2)^(n-k) ); \\ A000806

lista(nn) = {my(va = vector(nn)); va[1] = 1; va[2] = 0; va[3] = 1; va[4] = 3; va[5] = 12; for (n=5, nn-1, va[n+1] = 2*va[n] + (2*n-3)*va[n-1] - (2*n-5)*va[n-2] + 2*va[n-3] - va[n-4]; ); my(w=vector(nn-1, n, (va[n] + abs(f(n-1)))/2)); vector(#w-1, k, w[k+1] - w[k]); } \\ Michel Marcus, Jul 28 2020

CROSSREFS

Cf. A000806, A271215.

Sequence in context: A123355 A258791 A192509 * A012882 A063017 A341963

Adjacent sequences: A336650 A336651 A336652 * A336654 A336655 A336656

KEYWORD

sign

AUTHOR

Michel Marcus, Jul 28 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 23:44 EST 2022. Contains 358485 sequences. (Running on oeis4.)