login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271215
Number of loop-free assembly graphs with n rigid vertices.
2
1, 0, 1, 4, 24, 184, 1911, 24252, 362199, 6162080, 117342912, 2469791336, 56919388745, 1425435420600, 38543562608825, 1119188034056244, 34733368101580440, 1147320305439301344, 40190943859500501151, 1488212241729974297796, 58080468361734193793551
OFFSET
0,4
COMMENTS
Number of chord diagrams (equivalent up to reflection) that do not contain any simple chords, e.g., 121332 contains the simple chord 33.
REFERENCES
J. Burns, Counting a Class of Signed Permutations and Chord Diagrams related to DNA Rearrangement, Preprint.
LINKS
Kristin DeSplinter, Satyan L. Devadoss, Jordan Readyhough, and Bryce Wimberly, Unfolding cubes: nets, packings, partitions, chords, arXiv:2007.13266 [math.CO], 2020. See Table 1 p. 15.
FORMULA
a(n) ~ (2n/e)^n / (e * sqrt(2)).
a(n) = (|A000806(n)| + A271218(n)) / 2.
a(n)/A132101(n) ~ 1/e.
EXAMPLE
For n=0 the a(0)=1 solution is { ∅ }.
For n=1, a(1)=0 since the only assembly graph with one rigid vertex is the loop 11.
For n=2, the a(2)=1 solution is { 1212 }.
For n=3, the a(3)=4 solutions are { 121323, 123123, 123231, 123132 }.
MATHEMATICA
(Table[Sum[Binomial[n, i]*(2*n-i)!/2^(n-i)*(-1)^(i)/n!, {i, 0, n}], {n, 0, 20}]+RecurrenceTable[{a[n]==2a[n-1]+(2n-3)a[n-2]-(2n-5)a[n-3]+2a[n-4]-a[n-5], a[0]==1, a[1]==0, a[2]==1, a[3]==3, a[4]==12}, a[n], {n, 0, 20}])/2
PROG
(PARI) f(n) = sum(k=0, n, (2*n-k)! / (k! * (n-k)!) * (-1/2)^(n-k) ); \\ A000806
lista(nn) = {my(va = vector(nn)); va[1] = 1; va[2] = 0; va[3] = 1; va[4] = 3; va[5] = 12; for (n=5, nn-1, va[n+1] = 2*va[n] + (2*n-3)*va[n-1] - (2*n-5)*va[n-2] + 2*va[n-3] - va[n-4]; ); vector(nn-1, n, (va[n] + abs(f(n-1)))/2); } \\ Michel Marcus, Jul 28 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Burns, Apr 13 2016
STATUS
approved