login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A271214
Number of reduced rearrangement patterns with n blocks.
3
1, 1, 2, 10, 71, 653, 7638, 104958, 1664083, 29740057, 591645738, 12959409010, 309898317151, 8032551265957, 224316415082750, 6714021923017318, 214415538303362411, 7277133405318569009, 261560966377901961810, 9925178291099012783322, 396498148141095399675511
OFFSET
0,3
COMMENTS
a(n) is the number of reduced rearrangement patterns, i.e., the number of reduced rearrangement map equivalence classes formed from the two rotation involutions.
REFERENCES
J. Burns, Counting a Class of Signed Permutations and Chord Diagrams related to DNA Rearrangement, Preprint.
FORMULA
a(n) = ( round( 2^n e^(-1/2) (n+1/2) (n-1)! ) + round( 2^n e^(-1/4) (1-(1+(-1)^n)/4n)) floor(n/2)! ) / 4.
a(n) ~ sqrt( Pi*n / 8*e) * (2n / e)^n.
a(n) = (A271212(n) + A271217(n)) / 4.
EXAMPLE
For n=0 the a(0)=1 solution is { ∅ }
For n=1 the a(1)=1 solution is { +1 }
For n=2 the a(2)=2 solutions are { +2+1, +1-2 }
For n=3 the a(3)=10 solutions are { +3-2+1, +1+3-2, +2-3+1, +1+3+2, +2+1-3, +3+1-2, +1-3+2, +3+2+1, +3+2-1, +1-2+3 }
MATHEMATICA
Table[(Round[2^n*Exp[-1/2]*(n + 1/2)*(n - 1)!] + Round[2^n*Exp[ -1/4]*(1 - (1 + (-1)^n)/(4 n))*Floor[n/2]!])/4, {n, 1, 20}]
CROSSREFS
Sequence in context: A362821 A060842 A245834 * A366241 A321446 A111554
KEYWORD
nonn,easy
AUTHOR
Jonathan Burns, Apr 13 2016
STATUS
approved