login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226738
Row 3 of array in A226513.
9
1, 4, 24, 184, 1704, 18424, 227304, 3147064, 48278184, 812387704, 14872295784, 294192418744, 6251984167464, 142032703137784, 3434617880825064, 88075274293319224, 2387099326339205544, 68177508876215724664, 2046501717592969431144, 64408432189100396344504
OFFSET
0,2
LINKS
Connor Ahlbach, Jeremy Usatine and Nicholas Pippenger, Barred Preferential Arrangements, Electron. J. Combin., Volume 20, Issue 2 (2013), #P55.
FORMULA
E.g.f.: 1/(2 - exp(x))^4 (see the Ahlbach et al. paper, Theorem 4).
a(n) = sum( S2(n,i)*i!*binomial(3+i,i), i=0..n ), where S2 is the Stirling number of the second kind (see the Ahlbach et al. paper, Theorem 3). [Bruno Berselli, Jun 18 2013]
G.f.: 1/T(0), where T(k) = 1 - x*(k+4)/(1 - 2*x*(k+1)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 28 2013
a(n) ~ n! * n^3 / (96 * log(2)^(n+4)). - Vaclav Kotesovec, Oct 11 2022
Conjectural g.f. as a continued fraction of Stieltjes type: 1/(1 - 4*x/(1 - 2*x/(1 - 5*x/(1 - 4*x/(1 - 6*x/(1 - 6*x/(1 - (n+3)*x/(1 - 2*n*x/(1 - ... ))))))))). - Peter Bala, Aug 27 2023
From Seiichi Manyama, Nov 19 2023: (Start)
a(0) = 1; a(n) = Sum_{k=1..n} (3*k/n + 1) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 4*a(n-1) - 2*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). (End)
MATHEMATICA
Range[0, 20]! CoefficientList[Series[(2 - Exp@x)^-4, {x, 0, 20}], x]
PROG
(Magma) m:=3; [&+[StirlingSecond(n, i)*Factorial(i)*Binomial(m+i, i): i in [0..n]]: n in [0..20]]; // Bruno Berselli, Jun 18 2013
CROSSREFS
Cf. rows 0, 1, 2, 4, 5 of A226513: A000670, A005649, A226515, A226739, A226740.
Sequence in context: A152403 A111556 A300736 * A271215 A135905 A239296
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jun 18 2013
STATUS
approved