login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226740
Row 5 of array in A226513.
5
1, 6, 48, 468, 5340, 69516, 1014348, 16372908, 289366860, 5553635436, 114964523148, 2552305112748, 60474398655180, 1522843616043756, 40605864407444748, 1142786353739186988, 33848016050071188300, 1052381222812017946476, 34266937867683980363148, 1166071764343727862515628
OFFSET
0,2
LINKS
Connor Ahlbach, Jeremy Usatine and Nicholas Pippenger, Barred Preferential Arrangements, Electron. J. Combin., Volume 20, Issue 2 (2013), #P55.
FORMULA
E.g.f.: 1/(2 - exp(x))^6 (see the Ahlbach et al. paper, Theorem 4).
a(n) = Sum_{i=0..n} S2(n,i)*i!*binomial(5+i,i), where S2 is the Stirling number of the second kind (see the Ahlbach et al. paper, Theorem 3).
a(n) ~ n! * n^5 / (7680 * log(2)^(n+6)). - Vaclav Kotesovec, Oct 11 2022
Conjectural g.f. as a continued fraction of Stieltjes type: 1/(1 - 6*x/(1 - 2*x/(1 - 7*x/(1 - 4*x/(1 - 8*x/(1 - 6*x/(1 - (n+5)*x/(1 - 2*n*x/(1 - ... ))))))))). - Peter Bala, Aug 27 2023
From Seiichi Manyama, Nov 19 2023: (Start)
a(0) = 1; a(n) = Sum_{k=1..n} (5*k/n + 1) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 6*a(n-1) - 2*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). (End)
MATHEMATICA
Range[0, 20]! CoefficientList[Series[(2 - Exp@x)^-6, {x, 0, 20}], x]
PROG
(Magma) m:=5; [&+[StirlingSecond(n, i)*Factorial(i)*Binomial(m+i, i): i in [0..n]]: n in [0..20]];
CROSSREFS
Cf. rows 0, 1, 2, 3, 4 of A226513: A000670, A005649, A226515, A226738, A226739.
Sequence in context: A378155 A319292 A261834 * A244509 A105627 A051578
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jun 18 2013
STATUS
approved