login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226742
Triangular numbers obtained as the concatenation of 2n and n.
3
21, 105, 2211, 9045, 222111, 306153, 742371, 890445, 1050525, 22221111, 88904445, 107905395, 173808690, 2222211111, 8889044445, 12141260706, 15754278771, 222222111111, 888890444445, 22222221111111, 36734701836735, 65306123265306
OFFSET
1,1
EXAMPLE
If n=111, 2n=222, 2n//n = 222111 = 666*667/2, a triangular number.
MATHEMATICA
TriangularQ[n_] := IntegerQ[Sqrt[1 + 8*n]]; t = {}; Do[s = FromDigits[Join[IntegerDigits[2*n], IntegerDigits[n]]]; If[TriangularQ[s], AppendTo[t, s]], {n, 100000}]; t (* T. D. Noe, Jun 18 2013 *)
PROG
(PARI)
concatint(a, b)=eval(concat(Str(a), Str(b)))
istriang(x)=issquare(8*x+1)
{for(n=1, 10^5, a=concatint(2*n, n); if(istriang(a), print(a)))}
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Antonio Roldán, Jun 18 2013
STATUS
approved