login
Triangular numbers obtained as the concatenation of 2*k and k.
5

%I #24 Feb 06 2025 12:38:08

%S 21,105,2211,9045,222111,306153,742371,890445,1050525,22221111,

%T 88904445,107905395,173808690,2222211111,8889044445,12141260706,

%U 15754278771,222222111111,888890444445,22222221111111,36734701836735,65306123265306

%N Triangular numbers obtained as the concatenation of 2*k and k.

%C Includes (2*10^k+1)*(10^k-1)/9 and (2*10^k+1)*(4*10^k+5)/9 for k >= 1. - _Robert Israel_, Feb 06 2025

%H Robert Israel, <a href="/A226742/b226742.txt">Table of n, a(n) for n = 1..2675</a>

%e If k=111, 2k=222, 2k//k = 222111 = 666*667/2, a triangular number.

%p g:= proc(d) local a, b, n, Res, x, y;

%p Res:= NULL:

%p for a in numtheory:-divisors(2*(2*10^d+1)) do

%p b:= 2*(2*10^d+1)/a;

%p if igcd(a, b)>1 then next fi;

%p n:= chrem([0, -1], [a, b]);

%p x:= n*(n+1)/2;

%p y:= x/(2*10^d+1);

%p if y < 10^(d-1) or y >= 10^d then next fi;

%p Res:= Res, (2*10^d+1)*y

%p od;

%p op(sort([Res]))

%p end proc:

%p map(g, [$1..10]); # _Robert Israel_, Feb 06 2025

%t TriangularQ[n_] := IntegerQ[Sqrt[1 + 8*n]]; t = {}; Do[s = FromDigits[Join[IntegerDigits[2*n], IntegerDigits[n]]]; If[TriangularQ[s], AppendTo[t, s]], {n, 100000}]; t (* _T. D. Noe_, Jun 18 2013 *)

%o (PARI)

%o concatint(a,b)=eval(concat(Str(a),Str(b)))

%o istriang(x)=issquare(8*x+1)

%o {for(n=1,10^5,a=concatint(2*n,n);if(istriang(a),print(a)))}

%Y Cf. A003098, A068899, A226772, A226788, A226789, A380792.

%K nonn,base,changed

%O 1,1

%A _Antonio Roldán_, Jun 18 2013