login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226741
Column 4 of array in A226513.
4
75, 308, 807, 1704, 3155, 5340, 8463, 12752, 18459, 25860, 35255, 46968, 61347, 78764, 99615, 124320, 153323, 187092, 226119, 270920, 322035, 380028, 445487, 519024, 601275, 692900, 794583, 907032, 1030979, 1167180, 1316415, 1479488, 1657227, 1850484
OFFSET
0,1
COMMENTS
This is the case h = 4 in Sum_{k=0..h} S2(h,k)*k!*binomial(n+k,k), where S2 is the Stirling number of the second kind (see the Ahlbach et al. paper, Theorem 3). [Bruno Berselli, Jun 20 2013]
LINKS
Connor Ahlbach, Jeremy Usatine and Nicholas Pippenger, Barred Preferential Arrangements, Electron. J. Combin., Volume 20, Issue 2 (2013), #P55.
FORMULA
G.f.: (75 - 67*x + 17*x^2 - x^3)/(1 - x)^5.
a(n) = (n + 1)^4 + 12*(n + 1)^3 + 36*(n + 1)^2 + 26*(n + 1).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
E.g.f.: exp(x)*(75 + 233*x + 133*x^2 + 22*x^3 + x^4). - Franck Maminirina Ramaharo, Nov 29 2018
MATHEMATICA
Table[(n+1)^4 + 12 (n+1)^3 + 36 (n+1)^2 + 26 (n+1), {n, 0, 40}] (* or *) CoefficientList[Series[(75 - 67 x + 17 x^2 - x^3) / (1 - x)^5, {x, 0, 40}], x]
PROG
(Magma) [(n+1)^4+12*(n+1)^3+36*(n+1)^2+26*(n+1): n in [0..35]];
(Magma) I:=[75, 308, 807, 1704, 3155]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]];
CROSSREFS
Cf. columns 2, 3 and 5, 6 of A226513: A005563, A226514, A226800, A226801.
Sequence in context: A158742 A292313 A158765 * A223078 A055561 A350245
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jun 18 2013
STATUS
approved