login
A226514
Column 3 of array in A226513.
6
13, 44, 99, 184, 305, 468, 679, 944, 1269, 1660, 2123, 2664, 3289, 4004, 4815, 5728, 6749, 7884, 9139, 10520, 12033, 13684, 15479, 17424, 19525, 21788, 24219, 26824, 29609, 32580, 35743, 39104, 42669, 46444, 50435, 54648, 59089, 63764, 68679, 73840, 79253, 84924, 90859, 97064, 103545, 110308, 117359, 124704
OFFSET
0,1
COMMENTS
This is the case h=3 in sum( S2(h,k)*k!*binomial(n+k,k), k=0..h ), where S2 is the Stirling number of the second kind (see the Ahlbach et al. paper, Theorem 3). [Bruno Berselli, Jun 20 2013]
LINKS
Connor Ahlbach, Jeremy Usatine and Nicholas Pippenger, Barred Preferential Arrangements, Electron. J. Combin., Volume 20, Issue 2 (2013), #P55.
FORMULA
a(n) = (n + 1)*(n^2 + 8*n + 13).
G.f.: (13 - 8*x + x^2)/(1 - x)^4. - Vincenzo Librandi, Jun 17 2013
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 17 2013
E.g.f.: exp(x)*(13 + 31*x + 12*x^2 + x^3). - Franck Maminirina Ramaharo, Nov 29 2018
MATHEMATICA
Table[n^3 + 9*n^2 + 21*n + 13, {n, 0, 50}] (* or *) CoefficientList[Series[(13 - 8 x + x^2) / (1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 17 2013 *)
PROG
(Magma) [n^3+9*n^2+21*n+13: n in [0..50]]; // Vincenzo Librandi, Jun 17 2013
(Magma) I:=[13, 44, 99, 184]; [n le 4 select I[n] else 4*Self(n-1) -6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 17 2013
CROSSREFS
Cf. columns 2 and 4, 5, 6 of A226513: A005563, A226741, A226800, A226801.
Sequence in context: A015247 A033652 A026914 * A159742 A098385 A048364
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 13 2013
STATUS
approved