login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159742
If an array is made of columns of -nacci sequences (Fibonacci, tribonacci, etc.), all starting with 1,1,2,..., the NW-to-SE diagonals can be extended by computation. This sequence is diagonal 6. See A159741 for details.
2
13, 44, 108, 236, 492, 1004, 2028, 4076, 8172, 16364, 32748, 65516, 131052, 262124, 524268, 1048556, 2097132, 4194284, 8388588, 16777196, 33554412, 67108844, 134217708, 268435436, 536870892, 1073741804, 2147483628, 4294967276, 8589934572, 17179869164
OFFSET
1,1
FORMULA
From R. J. Mathar, Apr 22 2009: (Start)
a(n) = 3*a(n-1) - 2*a(n-2), n>3.
a(n) = 16*2^n - 20, n>1. (End)
MAPLE
T := proc(n, m) option remember ; if n < 0 then 0; elif n <= 1 then 1; elif n = 2 then 2; else add(procname(n-i, m), i=1..m) ; fi: end: A159742 := proc(n) T(n+5, n+1) ; end: seq(A159742(n), n=1..40) ; # R. J. Mathar, Apr 22 2009
MATHEMATICA
CoefficientList[Series[(2*z^2 + 5*z + 13)/(2*z^2 - 3*z + 1), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 08 2011 *)
Join[{13}, Table[4*(2^(n + 2) - 5), {n, 2, 50}]] (* G. C. Greubel, May 22 2018 *)
LinearRecurrence[{3, -2}, {13, 44, 108}, 30] (* Harvey P. Dale, Jul 10 2018 *)
PROG
(PARI) for(n=1, 30, print1(if(n==1, 13, 4*(2^(n+2) - 5)), ", ")) \\ G. C. Greubel, May 22 2018
(Magma) [13] cat [4*(2^(n+2) - 5): n in [2..30]]; // G. C. Greubel, May 22 2018
CROSSREFS
Sequence in context: A033652 A026914 A226514 * A098385 A048364 A254675
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Apr 20 2009
EXTENSIONS
More terms from R. J. Mathar, Apr 22 2009
STATUS
approved