login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

If an array is made of columns of -nacci sequences (Fibonacci, tribonacci, etc.), all starting with 1,1,2,..., the NW-to-SE diagonals can be extended by computation. This sequence is diagonal 6. See A159741 for details.
2

%I #16 Sep 08 2022 08:45:44

%S 13,44,108,236,492,1004,2028,4076,8172,16364,32748,65516,131052,

%T 262124,524268,1048556,2097132,4194284,8388588,16777196,33554412,

%U 67108844,134217708,268435436,536870892,1073741804,2147483628,4294967276,8589934572,17179869164

%N If an array is made of columns of -nacci sequences (Fibonacci, tribonacci, etc.), all starting with 1,1,2,..., the NW-to-SE diagonals can be extended by computation. This sequence is diagonal 6. See A159741 for details.

%H G. C. Greubel, <a href="/A159742/b159742.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2).

%F From _R. J. Mathar_, Apr 22 2009: (Start)

%F a(n) = 3*a(n-1) - 2*a(n-2), n>3.

%F a(n) = 16*2^n - 20, n>1. (End)

%p T := proc(n,m) option remember ; if n < 0 then 0; elif n <= 1 then 1; elif n = 2 then 2; else add(procname(n-i,m),i=1..m) ; fi: end: A159742 := proc(n) T(n+5,n+1) ; end: seq(A159742(n),n=1..40) ; # _R. J. Mathar_, Apr 22 2009

%t CoefficientList[Series[(2*z^2 + 5*z + 13)/(2*z^2 - 3*z + 1), {z, 0, 100}], z] (* _Vladimir Joseph Stephan Orlovsky_, Jul 08 2011 *)

%t Join[{13}, Table[4*(2^(n + 2) - 5), {n, 2, 50}]] (* _G. C. Greubel_, May 22 2018 *)

%t LinearRecurrence[{3,-2},{13,44,108},30] (* _Harvey P. Dale_, Jul 10 2018 *)

%o (PARI) for(n=1, 30, print1(if(n==1, 13, 4*(2^(n+2) - 5)), ", ")) \\ _G. C. Greubel_, May 22 2018

%o (Magma) [13] cat [4*(2^(n+2) - 5): n in [2..30]]; // _G. C. Greubel_, May 22 2018

%K nonn

%O 1,1

%A Al Hakanson (hawkuu(AT)gmail.com), Apr 20 2009

%E More terms from _R. J. Mathar_, Apr 22 2009