OFFSET
2,1
LINKS
R. H. Hardin, Table of n, a(n) for n=2..100
Index entries for linear recurrences with constant coefficients, signature (18,-81).
FORMULA
a(n) = (copies*n)*(copies+1)^(n-2) with copies = 8.
a(n) = 8*n*9^(n-2).
From Colin Barker, Feb 26 2018: (Start)
G.f.: 8*x^2*(2 - 9*x) / (1 - 9*x)^2.
a(n) = 18*a(n-1) - 81*a(n-2) for n>3.
(End)
From Amiram Eldar, May 16 2022: (Start)
Sum_{n>=2} 1/a(n) = (81/8)*log(9/8) - 9/8.
Sum_{n>=2} (-1)^n/a(n) = 9/8 - (81/8)*log(10/9). (End)
MATHEMATICA
LinearRecurrence[{18, -81}, {16, 216}, 30] (* G. C. Greubel, Jun 01 2018 *)
PROG
(PARI) Vec(8*x^2*(2 - 9*x) / (1 - 9*x)^2 + O(x^25)) \\ Colin Barker, Feb 26 2018
(Magma) I:=[16, 216]; [n le 2 select I[n] else 18*Self(n-1) - 81*Self(n-2): n in [1..30]]; // G. C. Greubel, Jun 01 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Apr 20 2009
STATUS
approved