login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159737
Number of permutations of 6 indistinguishable copies of 1..n arranged in a circle with exactly 2 local maxima.
2
150, 22680, 2596608, 273322980, 27558217008, 2700777267972, 259275295383552, 24501521550788100, 2286808732032093360, 211301127303186249252, 19362866942233277773632, 1762020891775616889450852, 159395120671659354639719856, 14345560860451487040265198020
OFFSET
2,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (189,-10731,173215,-1094856,2420208).
FORMULA
a(n) = 3*n*(61^2*84^(n-2) + 96*7^(n-2) - 396*n*7^(n-2))/121. - Andrew Howroyd, May 10 2020
From Colin Barker, Jul 18 2020: (Start)
G.f.: 6*x^2*(5 + 7*x)*(5 - 196*x - 2401*x^2 + 2058*x^3) / ((1 - 7*x)^3*(1 - 84*x)^2).
a(n) = 189*a(n-1) - 10731*a(n-2) + 173215*a(n-3) - 1094856*a(n-4) + 2420208*a(n-5) for n>6.
(End)
PROG
(PARI) a(n) = {3*n*(61^2*84^(n-2) + 96*7^(n-2) - 396*n*7^(n-2))/121} \\ Andrew Howroyd, May 10 2020
(PARI) Vec(6*x^2*(5 + 7*x)*(5 - 196*x - 2401*x^2 + 2058*x^3) / ((1 - 7*x)^3*(1 - 84*x)^2) + O(x^40)) \\ Colin Barker, Jul 18 2020
CROSSREFS
Column k=6 of A334772.
Cf. A159716.
Sequence in context: A264065 A264324 A145631 * A184664 A068274 A068286
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Apr 20 2009
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, May 09 2020
STATUS
approved