%I #12 Jul 18 2020 10:03:40
%S 150,22680,2596608,273322980,27558217008,2700777267972,
%T 259275295383552,24501521550788100,2286808732032093360,
%U 211301127303186249252,19362866942233277773632,1762020891775616889450852,159395120671659354639719856,14345560860451487040265198020
%N Number of permutations of 6 indistinguishable copies of 1..n arranged in a circle with exactly 2 local maxima.
%H Andrew Howroyd, <a href="/A159737/b159737.txt">Table of n, a(n) for n = 2..200</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (189,-10731,173215,-1094856,2420208).
%F a(n) = 3*n*(61^2*84^(n-2) + 96*7^(n-2) - 396*n*7^(n-2))/121. - _Andrew Howroyd_, May 10 2020
%F From _Colin Barker_, Jul 18 2020: (Start)
%F G.f.: 6*x^2*(5 + 7*x)*(5 - 196*x - 2401*x^2 + 2058*x^3) / ((1 - 7*x)^3*(1 - 84*x)^2).
%F a(n) = 189*a(n-1) - 10731*a(n-2) + 173215*a(n-3) - 1094856*a(n-4) + 2420208*a(n-5) for n>6.
%F (End)
%o (PARI) a(n) = {3*n*(61^2*84^(n-2) + 96*7^(n-2) - 396*n*7^(n-2))/121} \\ _Andrew Howroyd_, May 10 2020
%o (PARI) Vec(6*x^2*(5 + 7*x)*(5 - 196*x - 2401*x^2 + 2058*x^3) / ((1 - 7*x)^3*(1 - 84*x)^2) + O(x^40)) \\ _Colin Barker_, Jul 18 2020
%Y Column k=6 of A334772.
%Y Cf. A159716.
%K nonn,easy
%O 2,1
%A _R. H. Hardin_, Apr 20 2009
%E Terms a(7) and beyond from _Andrew Howroyd_, May 09 2020