login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of 6 indistinguishable copies of 1..n arranged in a circle with exactly 2 local maxima.
2

%I #12 Jul 18 2020 10:03:40

%S 150,22680,2596608,273322980,27558217008,2700777267972,

%T 259275295383552,24501521550788100,2286808732032093360,

%U 211301127303186249252,19362866942233277773632,1762020891775616889450852,159395120671659354639719856,14345560860451487040265198020

%N Number of permutations of 6 indistinguishable copies of 1..n arranged in a circle with exactly 2 local maxima.

%H Andrew Howroyd, <a href="/A159737/b159737.txt">Table of n, a(n) for n = 2..200</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (189,-10731,173215,-1094856,2420208).

%F a(n) = 3*n*(61^2*84^(n-2) + 96*7^(n-2) - 396*n*7^(n-2))/121. - _Andrew Howroyd_, May 10 2020

%F From _Colin Barker_, Jul 18 2020: (Start)

%F G.f.: 6*x^2*(5 + 7*x)*(5 - 196*x - 2401*x^2 + 2058*x^3) / ((1 - 7*x)^3*(1 - 84*x)^2).

%F a(n) = 189*a(n-1) - 10731*a(n-2) + 173215*a(n-3) - 1094856*a(n-4) + 2420208*a(n-5) for n>6.

%F (End)

%o (PARI) a(n) = {3*n*(61^2*84^(n-2) + 96*7^(n-2) - 396*n*7^(n-2))/121} \\ _Andrew Howroyd_, May 10 2020

%o (PARI) Vec(6*x^2*(5 + 7*x)*(5 - 196*x - 2401*x^2 + 2058*x^3) / ((1 - 7*x)^3*(1 - 84*x)^2) + O(x^40)) \\ _Colin Barker_, Jul 18 2020

%Y Column k=6 of A334772.

%Y Cf. A159716.

%K nonn,easy

%O 2,1

%A _R. H. Hardin_, Apr 20 2009

%E Terms a(7) and beyond from _Andrew Howroyd_, May 09 2020