login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318449
Numerators of the sequence whose Dirichlet convolution with itself yields A001511, the 2-adic valuation of 2n.
3
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 35, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1
OFFSET
1,9
LINKS
FORMULA
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A001511(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
MATHEMATICA
a1511[n_] := IntegerExponent[2n, 2];
f[1] = 1; f[n_] := f[n] = 1/2 (a1511[n] - Sum[f[d] f[n/d], {d, Divisors[ n][[2 ;; -2]]}]);
Table[f[n] // Numerator, {n, 1, 105}] (* Jean-François Alcover, Sep 13 2018 *)
PROG
(PARI)
up_to = 65537;
A001511(n) = 1+valuation(n, 2);
DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
v318449_51 = DirSqrt(vector(up_to, n, A001511(n)));
A318449(n) = numerator(v318449_51[n]);
CROSSREFS
Cf. A001511, A318450 (denominators).
Sequence in context: A031244 A030576 A101874 * A336651 A066715 A082457
KEYWORD
nonn,frac
AUTHOR
STATUS
approved